These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 24093290)
1. Massive symmetry breaking in LaAlO3/SrTiO3(111) quantum wells: a three-orbital strongly correlated generalization of graphene. Doennig D; Pickett WE; Pentcheva R Phys Rev Lett; 2013 Sep; 111(12):126804. PubMed ID: 24093290 [TBL] [Abstract][Full Text] [Related]
2. Control of orbital reconstruction in (LaAlO3)M/(SrTiO3)N(001) quantum wells by strain and confinement. Doennig D; Pentcheva R Sci Rep; 2015 Jan; 5():7909. PubMed ID: 25601648 [TBL] [Abstract][Full Text] [Related]
3. Valence Bond Orders at Charge Neutrality in a Possible Two-Orbital Extended Hubbard Model for Twisted Bilayer Graphene. Da Liao Y; Meng ZY; Xu XY Phys Rev Lett; 2019 Oct; 123(15):157601. PubMed ID: 31702323 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional electron gases at LaAlO3/SrTiO3 interfaces: orbital symmetry and hierarchy engineered by crystal orientation. Pesquera D; Scigaj M; Gargiani P; Barla A; Herrero-Martín J; Pellegrin E; Valvidares SM; Gázquez J; Varela M; Dix N; Fontcuberta J; Sánchez F; Herranz G Phys Rev Lett; 2014 Oct; 113(15):156802. PubMed ID: 25375731 [TBL] [Abstract][Full Text] [Related]
5. Spin, orbital, and charge order at the interface between correlated oxides. Jackeli G; Khaliullin G Phys Rev Lett; 2008 Nov; 101(21):216804. PubMed ID: 19113438 [TBL] [Abstract][Full Text] [Related]
6. Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide. He J; Di Sante D; Li R; Chen XQ; Rondinelli JM; Franchini C Nat Commun; 2018 Feb; 9(1):492. PubMed ID: 29402881 [TBL] [Abstract][Full Text] [Related]
7. Metal-insulator transition and orbital reconstruction in Mott-type quantum wells made of NdNiO3. Liu J; Kareev M; Meyers D; Gray B; Ryan P; Freeland JW; Chakhalian J Phys Rev Lett; 2012 Sep; 109(10):107402. PubMed ID: 23005325 [TBL] [Abstract][Full Text] [Related]
8. Electric field control of the LaAlO3/SrTiO3 interface ground state. Caviglia AD; Gariglio S; Reyren N; Jaccard D; Schneider T; Gabay M; Thiel S; Hammerl G; Mannhart J; Triscone JM Nature; 2008 Dec; 456(7222):624-7. PubMed ID: 19052624 [TBL] [Abstract][Full Text] [Related]
9. Polarization and electric field dependence of electronic properties in LaAlO3/SrTiO3 heterostructures. Yang X; Su H ACS Appl Mater Interfaces; 2011 Oct; 3(10):3819-23. PubMed ID: 21932802 [TBL] [Abstract][Full Text] [Related]
10. Engineering two-dimensional superconductivity and Rashba spin-orbit coupling in LaAlO₃/SrTiO₃ quantum wells by selective orbital occupancy. Herranz G; Singh G; Bergeal N; Jouan A; Lesueur J; Gázquez J; Varela M; Scigaj M; Dix N; Sánchez F; Fontcuberta J Nat Commun; 2015 Jan; 6():6028. PubMed ID: 25583368 [TBL] [Abstract][Full Text] [Related]
11. Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks. Thomas S; Li H; Bredas JL Adv Mater; 2019 Apr; 31(17):e1900355. PubMed ID: 30847999 [TBL] [Abstract][Full Text] [Related]
12. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Janicka K; Velev JP; Tsymbal EY Phys Rev Lett; 2009 Mar; 102(10):106803. PubMed ID: 19392142 [TBL] [Abstract][Full Text] [Related]
13. High Chern numbers in a perovskite-derived dice lattice (LaXO Köksal O; Li LL; Pentcheva R Sci Rep; 2023 Jun; 13(1):10615. PubMed ID: 37391462 [TBL] [Abstract][Full Text] [Related]
14. Coupled Nonpolar-Polar Metal-Insulator Transition in 1∶1 SrCrO(3)/SrTiO(3) Superlattices: A First-Principles Study. Zhou Y; Rabe KM Phys Rev Lett; 2015 Sep; 115(10):106401. PubMed ID: 26382686 [TBL] [Abstract][Full Text] [Related]
15. Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene. Maher P; Wang L; Gao Y; Forsythe C; Taniguchi T; Watanabe K; Abanin D; Papić Z; Cadden-Zimansky P; Hone J; Kim P; Dean CR Science; 2014 Jul; 345(6192):61-4. PubMed ID: 24994646 [TBL] [Abstract][Full Text] [Related]
16. Orbital Chern Insulator and Quantum Phase Diagram of a Kagome Electron System with Half-Filled Flat Bands. Ren Y; Jiang HC; Qiao Z; Sheng DN Phys Rev Lett; 2021 Mar; 126(11):117602. PubMed ID: 33798358 [TBL] [Abstract][Full Text] [Related]
17. d Orbital Topological Insulator and Semimetal in the Antifluorite Cu Sheng XL; Yu ZM; Yu R; Weng H; Yang SA J Phys Chem Lett; 2017 Aug; 8(15):3506-3511. PubMed ID: 28693321 [TBL] [Abstract][Full Text] [Related]
18. Antiferromagnetism in the Hubbard model on the Bernal-stacked honeycomb bilayer. Lang TC; Meng ZY; Scherer MM; Uebelacker S; Assaad FF; Muramatsu A; Honerkamp C; Wessel S Phys Rev Lett; 2012 Sep; 109(12):126402. PubMed ID: 23005964 [TBL] [Abstract][Full Text] [Related]
19. Dirac point degenerate with massive bands at a topological quantum critical point. Smith JC; Banerjee S; Pardo V; Pickett WE Phys Rev Lett; 2011 Feb; 106(5):056401. PubMed ID: 21405413 [TBL] [Abstract][Full Text] [Related]
20. Spin-Orbital Density Wave and a Mott Insulator in a Two-Orbital Hubbard Model on a Honeycomb Lattice. Zhu Z; Sheng DN; Fu L Phys Rev Lett; 2019 Aug; 123(8):087602. PubMed ID: 31491210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]