These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24093457)

  • 21. ¹H, ¹³C and ¹⁵N resonance assignments and peptide binding site chemical shift perturbation mapping for the Escherichia coli redox enzyme chaperone DmsD.
    Stevens CM; Okon M; McIntosh LP; Paetzel M
    Biomol NMR Assign; 2013 Oct; 7(2):193-7. PubMed ID: 22766963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the twin-arginine signal-binding protein DmsD from Escherichia coli.
    Ramasamy SK; Clemons WM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Aug; 65(Pt 8):746-50. PubMed ID: 19652330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD.
    Connelly KRS; Stevenson C; Kneuper H; Sargent F
    Microbiology (Reading); 2016 Dec; 162(12):2136-2146. PubMed ID: 27902441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme.
    Cherak SJ; Turner RJ
    Biomol Concepts; 2017 Sep; 8(3-4):155-167. PubMed ID: 28688222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins.
    Weiner JH; Bilous PT; Shaw GM; Lubitz SP; Frost L; Thomas GH; Cole JA; Turner RJ
    Cell; 1998 Apr; 93(1):93-101. PubMed ID: 9546395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.
    Ulfig A; Freudl R
    J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12.
    Guymer D; Maillard J; Sargent F
    Arch Microbiol; 2009 Jun; 191(6):519-28. PubMed ID: 19415239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exclusively membrane-inserted state of an uncleavable Tat precursor protein suggests lateral transfer into the bilayer from the translocon.
    Ren C; Patel R; Robinson C
    FEBS J; 2013 Jul; 280(14):3354-64. PubMed ID: 23647663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the quality control mechanism of the
    Sutherland GA; Grayson KJ; Adams NBP; Mermans DMJ; Jones AS; Robertson AJ; Auman DB; Brindley AA; Sterpone F; Tuffery P; Derreumaux P; Dutton PL; Robinson C; Hitchcock A; Hunter CN
    J Biol Chem; 2018 May; 293(18):6672-6681. PubMed ID: 29559557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates.
    Chan CS; Chang L; Winstone TM; Turner RJ
    FEBS Lett; 2010 Nov; 584(22):4553-8. PubMed ID: 20974141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains.
    Ize B; Coulthurst SJ; Hatzixanthis K; Caldelari I; Buchanan G; Barclay EC; Richardson DJ; Palmer T; Sargent F
    Microbiology (Reading); 2009 Dec; 155(Pt 12):3992-4004. PubMed ID: 19778964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides.
    Mendel S; McCarthy A; Barnett JP; Eijlander RT; Nenninger A; Kuipers OP; Robinson C
    J Mol Biol; 2008 Jan; 375(3):661-72. PubMed ID: 18036542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes.
    Jones AS; Austerberry JI; Dajani R; Warwicker J; Curtis R; Derrick JP; Robinson C
    Biochim Biophys Acta; 2016 Dec; 1863(12):3116-3124. PubMed ID: 27619192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane targeting of a folded and cofactor-containing protein.
    Brüser T; Yano T; Brune DC; Daldal F
    Eur J Biochem; 2003 Mar; 270(6):1211-21. PubMed ID: 12631279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane binding of twin arginine preproteins as an early step in translocation.
    Shanmugham A; Wong Fong Sang HW; Bollen YJ; Lill H
    Biochemistry; 2006 Feb; 45(7):2243-9. PubMed ID: 16475812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli.
    Chan CS; Howell JM; Workentine ML; Turner RJ
    Biochem Biophys Res Commun; 2006 Apr; 343(1):244-51. PubMed ID: 16540088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive charges promote the recognition of proteins by the chaperone SlyD from Escherichia coli.
    Lindemeier D; Graubner W; Mehner-Breitfeld D; Malešević M; Brüser T
    PLoS One; 2024; 19(6):e0305823. PubMed ID: 38917203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide.
    Chanal A; Santini CL; Wu LF
    J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.