These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24093730)

  • 21. An evaluation of carbon steel corrosion under stagnant seawater conditions.
    Lee JS; Ray RI; Lemieux EJ; Falster AU; Little BJ
    Biofouling; 2004; 20(4-5):237-47. PubMed ID: 15621645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle.
    Comolli LR; Luef B; Chan CS
    Environ Microbiol; 2011 Nov; 13(11):2915-29. PubMed ID: 21895918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrosion of Q235 Carbon Steel in Seawater Containing
    Chen S; Deng H; Liu G; Zhang D
    Front Microbiol; 2019; 10():936. PubMed ID: 31134004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California.
    Ramírez GA; Hoffman CL; Lee MD; Lesniewski RA; Barco RA; Garber A; Toner BM; Wheat CG; Edwards KJ; Orcutt BN
    Front Microbiol; 2016; 7():1679. PubMed ID: 27826293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water-soluble chitosan salt as ecofriendly corrosion inhibitor for N80 pipeline steel in artificial sea water: Experimental and theoretical approach.
    Kumar AM; Rajesh T; Obot IB; Bin Sharfan II; Abdulhamid MA
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127697. PubMed ID: 37918585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion.
    Jayaraman A; Cheng ET; Earthman JC; Wood TK
    Appl Microbiol Biotechnol; 1997 Jul; 48(1):11-7. PubMed ID: 9274042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water.
    Melitas N; Conklin M; Farrell J
    Environ Sci Technol; 2002 Jul; 36(14):3188-93. PubMed ID: 12141502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Processes leading to reduced and oxidised carbon compounds during corrosion of zero-valent iron in alkaline anoxic conditions.
    Guillemot T; Cvetković BZ; Kunz D; Wieland E
    Chemosphere; 2020 Jul; 250():126230. PubMed ID: 32234616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.
    Valencia-Cantero E; Peña-Cabriales JJ
    J Microbiol Biotechnol; 2014 Feb; 24(2):280-6. PubMed ID: 24225375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of biomineralization in microbiologically influenced corrosion.
    Little B; Wagner P; Hart K; Ray R; Lavoie D; Nealson K; Aguilar C
    Biodegradation; 1998; 9(1):1-10. PubMed ID: 9807800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of marine Shewanella putrefaciens and mediated calcium deposition on Q235 carbon steel corrosion.
    Lou Y; Chang W; Huang L; Chen X; Hao X; Qian H; Zhang D
    Bioelectrochemistry; 2024 Jun; 157():108657. PubMed ID: 38335713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
    Barco RA; Emerson D; Sylvan JB; Orcutt BN; Jacobson Meyers ME; Ramírez GA; Zhong JD; Edwards KJ
    Appl Environ Microbiol; 2015 Sep; 81(17):5927-37. PubMed ID: 26092463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Issues for storing plant-based alternative fuels in marine environments.
    Lee JS; Ray RI; Little BJ; Duncan KE; Aktas DF; Oldham AL; Davidova IA; Suflita JM
    Bioelectrochemistry; 2014 Jun; 97():145-53. PubMed ID: 24411308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights on biotic and abiotic 2,4-dichlorophenoxyacetic acid degradation by anaerobic iron-cycling bacteria.
    Stevenson Z; Tong H; Swanner ED
    J Environ Qual; 2023; 52(6):1092-1101. PubMed ID: 37689985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications.
    Nguyen TA; Lu Y; Yang X; Shi X
    Environ Sci Technol; 2007 Dec; 41(23):7987-96. PubMed ID: 18186327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria.
    McBeth JM; Emerson D
    Front Microbiol; 2016; 7():767. PubMed ID: 27252686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early detection of oxidized surfaces using Shewanella oneidensis MR-1 as a tool.
    Waters MS; Salas EC; Goodman SD; Udwadia FE; Nealson KH
    Biofouling; 2009; 25(2):163-72. PubMed ID: 19165644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.