These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24093730)
41. Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy. Melitas N; Farrell J Environ Sci Technol; 2002 Dec; 36(24):5476-82. PubMed ID: 12521178 [TBL] [Abstract][Full Text] [Related]
42. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria. Kato S; Ohkuma M; Powell DH; Krepski ST; Oshima K; Hattori M; Shapiro N; Woyke T; Chan CS Front Microbiol; 2015; 6():1265. PubMed ID: 26617599 [TBL] [Abstract][Full Text] [Related]
43. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel. Miller RB; Sadek A; Rodriguez A; Iannuzzi M; Giai C; Senko JM; Monty CN PLoS One; 2016; 11(1):e0147899. PubMed ID: 26824529 [TBL] [Abstract][Full Text] [Related]
44. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Wakai S; Ito K; Iino T; Tomoe Y; Mori K; Harayama S Microb Ecol; 2014 Oct; 68(3):519-27. PubMed ID: 24863130 [TBL] [Abstract][Full Text] [Related]
45. Association of uranium with iron oxides typically formed on corroding steel surfaces. Dodge CJ; Francis AJ; Gillow JB; Halada GP; Eng C; Clayton CR Environ Sci Technol; 2002 Aug; 36(16):3504-11. PubMed ID: 12214641 [TBL] [Abstract][Full Text] [Related]
46. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Qi H; Wang Y; Feng J; Peng R; Shi Q; Xie X Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36430135 [TBL] [Abstract][Full Text] [Related]
47. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil. Chen Y; Li X; Liu T; Li F; Sun W; Young LY; Huang W Sci Total Environ; 2022 Dec; 851(Pt 1):158068. PubMed ID: 35987227 [TBL] [Abstract][Full Text] [Related]
48. Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization. Guan F; Zhai X; Duan J; Zhang M; Hou B PLoS One; 2016; 11(9):e0162315. PubMed ID: 27603928 [TBL] [Abstract][Full Text] [Related]
49. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration. Brauer JI; Makama Z; Bonifay V; Aydin E; Kaufman ED; Beech IB; Sunner J Biointerphases; 2015 Mar; 10(1):019003. PubMed ID: 25708633 [TBL] [Abstract][Full Text] [Related]
50. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Li Z; Wan H; Song D; Liu X; Li Z; Du C Bioelectrochemistry; 2019 Apr; 126():121-129. PubMed ID: 30579249 [TBL] [Abstract][Full Text] [Related]
51. A comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt % sodium chloride solution after different exposure intervals. Sherif el-SM Molecules; 2014 Jul; 19(7):9962-74. PubMed ID: 25010468 [TBL] [Abstract][Full Text] [Related]
52. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense. Qian H; Zhang J; Cui T; Fan L; Chen X; Liu W; Chang W; Du C; Zhang D Bioelectrochemistry; 2021 Aug; 140():107746. PubMed ID: 33578300 [TBL] [Abstract][Full Text] [Related]
53. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants. Ashassi-Sorkhabi H; Moradi-Haghighi M; Zarrini G; Javaherdashti R Biodegradation; 2012 Feb; 23(1):69-79. PubMed ID: 21695454 [TBL] [Abstract][Full Text] [Related]
54. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus. Guan F; Liu Z; Dong X; Zhai X; Zhang B; Duan J; Wang N; Gao Y; Yang L; Hou B Sci Total Environ; 2021 Sep; 788():147573. PubMed ID: 34034174 [TBL] [Abstract][Full Text] [Related]
55. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Jia R; Yang D; Xu D; Gu T Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664 [TBL] [Abstract][Full Text] [Related]
56. Improving the electrochemical characteristics and performance of a neutral all-iron flow battery by using the iron reduction bacteria. Li S; Peng X; Zheng D; Fan S; Li D Bioelectrochemistry; 2024 Jun; 157():108660. PubMed ID: 38301292 [TBL] [Abstract][Full Text] [Related]
57. Microbial iron respiration can protect steel from corrosion. Dubiel M; Hsu CH; Chien CC; Mansfeld F; Newman DK Appl Environ Microbiol; 2002 Mar; 68(3):1440-5. PubMed ID: 11872499 [TBL] [Abstract][Full Text] [Related]
58. Conditioning of metal surfaces enhances Tuck B; Watkin E; Somers A; Forsyth M; Machuca LL Biofouling; 2022 Mar; 38(3):207-222. PubMed ID: 35345940 [TBL] [Abstract][Full Text] [Related]
59. Combined Experimental and Theoretical Insights into the Corrosion Inhibition Activity on Carbon Steel Iron of Phosphonic Acids. Visa A; Plesu N; Maranescu B; Ilia G; Borota A; Crisan L Molecules; 2020 Dec; 26(1):. PubMed ID: 33396808 [TBL] [Abstract][Full Text] [Related]
60. Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. Chauhan DS; Ansari KR; Sorour AA; Quraishi MA; Lgaz H; Salghi R Int J Biol Macromol; 2018 Feb; 107(Pt B):1747-1757. PubMed ID: 29030196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]