BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 24094006)

  • 1. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.
    Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B
    BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in
    Martí-Raga M; Peltier E; Mas A; Beltran G; Marullo P
    G3 (Bethesda); 2017 Feb; 7(2):399-412. PubMed ID: 27903630
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Deed RC; Fedrizzi B; Gardner RC
    G3 (Bethesda); 2017 Mar; 7(3):1039-1048. PubMed ID: 28143947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.
    Salinas F; Cubillos FA; Soto D; Garcia V; Bergström A; Warringer J; Ganga MA; Louis EJ; Liti G; Martinez C
    PLoS One; 2012; 7(11):e49640. PubMed ID: 23185390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.
    Zimmer A; Durand C; Loira N; Durrens P; Sherman DJ; Marullo P
    PLoS One; 2014; 9(1):e86298. PubMed ID: 24489712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.
    Jara M; Cubillos FA; García V; Salinas F; Aguilera O; Liti G; Martínez C
    PLoS One; 2014; 9(1):e86533. PubMed ID: 24466135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive Copy Number Variation in Fermentation-Related Genes Among
    Steenwyk J; Rokas A
    G3 (Bethesda); 2017 May; 7(5):1475-1485. PubMed ID: 28292787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices.
    Peltier E; Sharma V; Martí Raga M; Roncoroni M; Bernard M; Jiranek V; Gibon Y; Marullo P
    BMC Genomics; 2018 Nov; 19(1):772. PubMed ID: 30409183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QTL mapping of the production of wine aroma compounds by yeast.
    Steyer D; Ambroset C; Brion C; Claudel P; Delobel P; Sanchez I; Erny C; Blondin B; Karst F; Legras JL
    BMC Genomics; 2012 Oct; 13():573. PubMed ID: 23110365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach.
    Ambroset C; Petit M; Brion C; Sanchez I; Delobel P; Guérin C; Chiapello H; Nicolas P; Bigey F; Dequin S; Blondin B
    G3 (Bethesda); 2011 Sep; 1(4):263-81. PubMed ID: 22384338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling.
    Brice C; Sanchez I; Bigey F; Legras JL; Blondin B
    BMC Genomics; 2014 Jun; 15(1):495. PubMed ID: 24947828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.
    Novo M; Bigey F; Beyne E; Galeote V; Gavory F; Mallet S; Cambon B; Legras JL; Wincker P; Casaregola S; Dequin S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16333-8. PubMed ID: 19805302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.
    Pizarro FJ; Jewett MC; Nielsen J; Agosin E
    Appl Environ Microbiol; 2008 Oct; 74(20):6358-68. PubMed ID: 18723660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation.
    Peltier E; Vion C; Abou Saada O; Friedrich A; Schacherer J; Marullo P
    Front Fungal Biol; 2021; 2():733513. PubMed ID: 37744152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.
    Coi AL; Bigey F; Mallet S; Marsit S; Zara G; Gladieux P; Galeote V; Budroni M; Dequin S; Legras JL
    Mol Ecol; 2017 Apr; 26(7):2150-2166. PubMed ID: 28192619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.