BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24094065)

  • 1. Computational study of the Fe(CN)2CO cofactor and its binding to HypC protein.
    Albareda M; Palacios JM; Imperial J; Pacios LF
    J Phys Chem B; 2013 Oct; 117(43):13523-33. PubMed ID: 24094065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation.
    Stripp ST; Soboh B; Lindenstrauss U; Braussemann M; Herzberg M; Nies DH; Sawers RG; Heberle J
    Biochemistry; 2013 May; 52(19):3289-96. PubMed ID: 23597401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)
    Arlt C; Nutschan K; Haase A; Ihling C; Tänzler D; Sinz A; Sawers RG
    Sci Rep; 2021 Dec; 11(1):24362. PubMed ID: 34934150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN- ligands.
    Soboh B; Stripp ST; Muhr E; Granich C; Braussemann M; Herzberg M; Heberle J; Gary Sawers R
    FEBS Lett; 2012 Nov; 586(21):3882-7. PubMed ID: 23022438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK.
    Albareda M; Pacios LF; Manyani H; Rey L; Brito B; Imperial J; Ruiz-Argüeso T; Palacios JM
    J Biol Chem; 2014 Aug; 289(31):21217-29. PubMed ID: 24942742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of oxygen on [NiFe]-hydrogenase cofactor biosynthesis and how ligation of carbon monoxide precedes cyanation.
    Stripp ST; Lindenstrauss U; Granich C; Sawers RG; Soboh B
    PLoS One; 2014; 9(9):e107488. PubMed ID: 25211029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase.
    Bürstel I; Siebert E; Winter G; Hummel P; Zebger I; Friedrich B; Lenz O
    J Biol Chem; 2012 Nov; 287(46):38845-53. PubMed ID: 23019332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1.
    Soboh B; Lindenstrauss U; Granich C; Javed M; Herzberg M; Thomas C; Stripp ST
    Biochem J; 2014 Dec; 464(2):169-77. PubMed ID: 25184670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dinuclear iron(II)-cyanocarbonyl complexes linked by two/three bridging ethylthiolates: relevance to the active site of [Fe] hydrogenases.
    Liaw WF; Tsai WT; Gau HB; Lee CM; Chou SY; Chen WY; Lee GH
    Inorg Chem; 2003 Apr; 42(8):2783-8. PubMed ID: 12691589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Six-coordinate and five-coordinate Fe(II)(CN)(2)(CO)(x) thiolate complexes (x = 1, 2): synthetic advances for iron sites of [NiFe] hydrogenases.
    Liaw WF; Lee JH; Gau HB; Chen CH; Jung SJ; Hung CH; Chen WY; Hu CH; Lee GH
    J Am Chem Soc; 2002 Feb; 124(8):1680-8. PubMed ID: 11853444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins.
    Miki K; Atomi H; Watanabe S
    Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases.
    Blokesch M; Albracht SP; Matzanke BF; Drapal NM; Jacobi A; Böck A
    J Mol Biol; 2004 Nov; 344(1):155-67. PubMed ID: 15504408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation.
    Watanabe S; Matsumi R; Atomi H; Imanaka T; Miki K
    Structure; 2012 Dec; 20(12):2124-37. PubMed ID: 23123111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase.
    Ludwig M; Schubert T; Zebger I; Wisitruangsakul N; Saggu M; Strack A; Lenz O; Hildebrandt P; Friedrich B
    J Biol Chem; 2009 Jan; 284(4):2159-68. PubMed ID: 19017638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the absolute configuration of the CO and CN- ligands at the active site of a [NiFe] hydrogenase.
    Rippers Y; Horch M; Hildebrandt P; Zebger I; Mroginski MA
    Chemphyschem; 2012 Dec; 13(17):3852-6. PubMed ID: 22945586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli.
    Haase A; Arlt C; Sinz A; Sawers RG
    Sci Rep; 2024 Feb; 14(1):3026. PubMed ID: 38321125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of cyanide on the carbonylation of iron(II): synthesis of Fe-Sr-Cn-Co centers related to the hydrogenase active sites.
    Rauchfuss TB; Contakes SM; Hsu SC; Reynolds MA; Wilson SR
    J Am Chem Soc; 2001 Jul; 123(28):6933-4. PubMed ID: 11448203
    [No Abstract]   [Full Text] [Related]  

  • 18. Targeting intermediates of [FeFe]-hydrogenase by CO and CN vibrational signatures.
    Yu L; Greco C; Bruschi M; Ryde U; De Gioia L; Reiher M
    Inorg Chem; 2011 May; 50(9):3888-900. PubMed ID: 21443182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase.
    Soboh B; Adrian L; Stripp ST
    J Biol Chem; 2022 Sep; 298(9):102291. PubMed ID: 35868564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide.
    Thomas C; Muhr E; Sawers RG
    J Bacteriol; 2015 Sep; 197(18):2989-98. PubMed ID: 26170410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.