BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 24094164)

  • 81. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering.
    Lima PA; Resende CX; Soares GD; Anselme K; Almeida LE
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3389-95. PubMed ID: 23706225
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells.
    Ge M; Xue L; Nie T; Ma H; Zhang J
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation.
    Lukyanova L; Franceschi-Messant S; Vicendo P; Perez E; Rico-Lattes I; Weinkamer R
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):105-12. PubMed ID: 20427161
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering.
    Rodriguez-Lorenzo LM; Saldaña L; Benito-Garzón L; García-Carrodeguas R; de Aza S; Vilaboa N; Román JS
    J Tissue Eng Regen Med; 2012 Jun; 6(6):421-33. PubMed ID: 21800433
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering.
    Kavya KC; Jayakumar R; Nair S; Chennazhi KP
    Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.
    Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M
    J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation.
    Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold.
    Xiao WD; Zhong ZM; Tang YZ; Xu ZX; Xu Z; Chen JT
    Saudi Med J; 2012 Jun; 33(6):601-7. PubMed ID: 22729113
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Bone-like apatite formation in biocompatible phosphate-crosslinked bacterial cellulose-based hydrogels for bone tissue engineering applications.
    Suneetha M; Kim H; Han SS
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128364. PubMed ID: 38000603
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design.
    Shahbazi S; Zamanian A; Pazouki M; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():109-120. PubMed ID: 29525086
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering.
    Chlanda A; Oberbek P; Heljak M; Kijeńska-Gawrońska E; Bolek T; Gloc M; John Ł; Janeta M; Woźniak MJ
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():516-523. PubMed ID: 30423736
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering.
    Saravanan S; Sameera DK; Moorthi A; Selvamurugan N
    Int J Biol Macromol; 2013 Nov; 62():481-6. PubMed ID: 24095711
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications.
    Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Low elastic modulus titanium-nickel scaffolds for bone implants.
    Li J; Yang H; Wang H; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():110-4. PubMed ID: 24268239
    [TBL] [Abstract][Full Text] [Related]  

  • 97. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering.
    Nayak KK; Gupta P
    Int J Biol Macromol; 2015 Nov; 81():1-10. PubMed ID: 26188296
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering.
    Warnke PH; Douglas T; Wollny P; Sherry E; Steiner M; Galonska S; Becker ST; Springer IN; Wiltfang J; Sivananthan S
    Tissue Eng Part C Methods; 2009 Jun; 15(2):115-24. PubMed ID: 19072196
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.
    Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L
    Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968
    [TBL] [Abstract][Full Text] [Related]  

  • 100. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.
    Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A
    Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.