These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24094182)

  • 1. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes.
    Stumpf TR; Pértile RA; Rambo CR; Porto LM
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4739-45. PubMed ID: 24094182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
    Uzyol HK; Saçan MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11154-11162. PubMed ID: 27312900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of bacterial cellulose using different carbon sources and culture media.
    Mohammadkazemi F; Azin M; Ashori A
    Carbohydr Polym; 2015 Mar; 117():518-523. PubMed ID: 25498666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.
    Mohite BV; Salunke BK; Patil SV
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1497-511. PubMed ID: 23319186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofiber density determines endothelial cell behavior on hydrogel matrix.
    Berti FV; Rambo CR; Dias PF; Porto LM
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4684-91. PubMed ID: 24094176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.
    Huang C; Yang XY; Xiong L; Guo HJ; Luo J; Wang B; Zhang HR; Lin XQ; Chen XD
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1678-88. PubMed ID: 25422061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications.
    Lin WC; Lien CC; Yeh HJ; Yu CM; Hsu SH
    Carbohydr Polym; 2013 Apr; 94(1):603-11. PubMed ID: 23544580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose production by Gluconacetobacter sp. GM5 in a static semi-continuous fermentation process using vinasse as culture media.
    Velásquez-Riaño M; Lombana-Sánchez N
    Water Sci Technol; 2009; 59(6):1195-200. PubMed ID: 19342816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization.
    Lopes TD; Riegel-Vidotti IC; Grein A; Tischer CA; Faria-Tischer PC
    Int J Biol Macromol; 2014 Jun; 67():401-8. PubMed ID: 24704166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of bacterial cellulose produced using a trickling bed reactor.
    Lu H; Jiang X
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3844-61. PubMed ID: 24682876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.
    Cakar F; Ozer I; Aytekin AÖ; Sahin F
    Carbohydr Polym; 2014 Jun; 106():7-13. PubMed ID: 24721044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of purified bacterial cellulose focused on its use on paper restoration.
    Santos SM; Carbajo JM; Quintana E; Ibarra D; Gomez N; Ladero M; Eugenio ME; Villar JC
    Carbohydr Polym; 2015 Feb; 116():173-81. PubMed ID: 25458287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing.
    Laçin NT
    Int J Biol Macromol; 2014 Jun; 67():22-7. PubMed ID: 24631550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Influence of culture mode on bacterial cellulose production and its structure and property].
    Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Cellulose Hybrid Composites with Calcium Phosphate for Bone Tissue Regeneration.
    Busuioc C; Isopencu G; Banciu A; Banciu DD; Oprea O; Mocanu A; Deleanu I; Zăuleţ M; Popescu L; Tănăsuică R; Vasilescu M; Stoica-Guzun A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of dextrin-based hydrogels: rheology, biocompatibility, and degradation.
    Carvalho J; Moreira S; Maia J; Gama FM
    J Biomed Mater Res A; 2010 Apr; 93(1):389-99. PubMed ID: 19569221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus.
    Castro C; Zuluaga R; Álvarez C; Putaux JL; Caro G; Rojas OJ; Mondragon I; Gañán P
    Carbohydr Polym; 2012 Aug; 89(4):1033-7. PubMed ID: 24750910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.