These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
605 related articles for article (PubMed ID: 24094189)
1. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application. Okulov IV; Pauly S; Kühn U; Gargarella P; Marr T; Freudenberger J; Schultz L; Scharnweber J; Oertel CG; Skrotzki W; Eckert J Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4795-801. PubMed ID: 24094189 [TBL] [Abstract][Full Text] [Related]
2. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. Okulov IV; Volegov AS; Attar H; Bönisch M; Ehtemam-Haghighi S; Calin M; Eckert J J Mech Behav Biomed Mater; 2017 Jan; 65():866-871. PubMed ID: 27810733 [TBL] [Abstract][Full Text] [Related]
3. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494 [TBL] [Abstract][Full Text] [Related]
4. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy. Wang P; Wu L; Feng Y; Bai J; Zhang B; Song J; Guan S Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():536-542. PubMed ID: 28024619 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys. Wang P; Feng Y; Liu F; Wu L; Guan S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119 [TBL] [Abstract][Full Text] [Related]
7. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material. Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942 [TBL] [Abstract][Full Text] [Related]
8. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557 [TBL] [Abstract][Full Text] [Related]
9. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications. Karre R; Niranjan MK; Dey SR Mater Sci Eng C Mater Biol Appl; 2015 May; 50():52-8. PubMed ID: 25746245 [TBL] [Abstract][Full Text] [Related]
10. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759 [TBL] [Abstract][Full Text] [Related]
11. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Hieda J Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686 [TBL] [Abstract][Full Text] [Related]
12. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys. Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and microstructures of β Ti-25Nb-11Sn ternary alloy for biomedical applications. Jung TK; Semboshi S; Masahashi N; Hanada S Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1629-35. PubMed ID: 23827617 [TBL] [Abstract][Full Text] [Related]
14. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP). Lin Z; Wang L; Xue X; Lu W; Qin J; Zhang D Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4551-61. PubMed ID: 24094159 [TBL] [Abstract][Full Text] [Related]
15. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes. Gabriel SB; de Almeida LH; Nunes CA; Dille J; Soares GA Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3319-24. PubMed ID: 23706216 [TBL] [Abstract][Full Text] [Related]
16. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873 [TBL] [Abstract][Full Text] [Related]
17. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method. Koike M; Hummel SK; Ball JD; Okabe T J Prosthet Dent; 2012 Jun; 107(6):393-9. PubMed ID: 22633596 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of cast Ti-6Al-4V-XCu alloys. Aoki T; Okafor IC; Watanabe I; Hattori M; Oda Y; Okabe T J Oral Rehabil; 2004 Nov; 31(11):1109-14. PubMed ID: 15525390 [TBL] [Abstract][Full Text] [Related]
20. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Zhao X; Niinomi M; Nakai M; Hieda J; Ishimoto T; Nakano T Acta Biomater; 2012 Jul; 8(6):2392-400. PubMed ID: 22342893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]