These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 24094305)
1. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. Kottapalli KR; Zabet-Moghaddam M; Rowland D; Faircloth W; Mirzaei M; Haynes PA; Payton P J Proteome Res; 2013 Nov; 12(11):5048-57. PubMed ID: 24094305 [TBL] [Abstract][Full Text] [Related]
2. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063 [TBL] [Abstract][Full Text] [Related]
3. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Kottapalli KR; Rakwal R; Shibato J; Burow G; Tissue D; Burke J; Puppala N; Burow M; Payton P Plant Cell Environ; 2009 Apr; 32(4):380-407. PubMed ID: 19143990 [TBL] [Abstract][Full Text] [Related]
4. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development. Barvkar VT; Pardeshi VC; Kale SM; Kadoo NY; Giri AP; Gupta VS J Proteome Res; 2012 Dec; 11(12):6264-76. PubMed ID: 23153172 [TBL] [Abstract][Full Text] [Related]
5. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. Sun Y; Wang Q; Li Z; Hou L; Dai S; Liu W J Proteome Res; 2013 Dec; 12(12):5502-11. PubMed ID: 24159916 [TBL] [Abstract][Full Text] [Related]
6. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.). Parreira JR; Bouraada J; Fitzpatrick MA; Silvestre S; Bernardes da Silva A; Marques da Silva J; Almeida AM; Fevereiro P; Altelaar AFM; Araújo SS J Proteomics; 2016 Jun; 143():188-198. PubMed ID: 26945737 [TBL] [Abstract][Full Text] [Related]
7. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. Zhao C; Zhao S; Hou L; Xia H; Wang J; Li C; Li A; Li T; Zhang X; Wang X BMC Plant Biol; 2015 Aug; 15():188. PubMed ID: 26239120 [TBL] [Abstract][Full Text] [Related]
8. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). Wang T; Zhang E; Chen X; Li L; Liang X BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. Zhu W; Zhang E; Li H; Chen X; Zhu F; Hong Y; Liao B; Liu S; Liang X J Proteomics; 2013 Oct; 91():172-87. PubMed ID: 23851312 [TBL] [Abstract][Full Text] [Related]
10. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. Katam R; Sakata K; Suravajhala P; Pechan T; Kambiranda DM; Naik KS; Guo B; Basha SM J Proteomics; 2016 Jun; 143():209-226. PubMed ID: 27282920 [TBL] [Abstract][Full Text] [Related]
11. Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Chen H; Liu N; Xu R; Chen X; Zhang Y; Hu R; Lan X; Tang Z; Lin G Plant Biol (Stuttg); 2021 May; 23(3):517-527. PubMed ID: 33502082 [TBL] [Abstract][Full Text] [Related]
12. [The cDNA cloning of conarachin gene and its expression in developing peanut seeds]. Wang L; Yan YS; Liao B; Lin XD; Huang SZ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):107-10. PubMed ID: 15692187 [TBL] [Abstract][Full Text] [Related]
14. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination. Wang Y; Ma X; Zhang X; He X; Li H; Cui D; Yin D J Proteome Res; 2016 Dec; 15(12):4277-4289. PubMed ID: 27669742 [TBL] [Abstract][Full Text] [Related]
15. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. D'Hooghe P; Dubousset L; Gallardo K; Kopriva S; Avice JC; Trouverie J Mol Cell Proteomics; 2014 May; 13(5):1165-83. PubMed ID: 24554741 [TBL] [Abstract][Full Text] [Related]
16. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions. Zhang P; Liu D; Shen H; Li Y; Nie Y Int J Mol Sci; 2015 Mar; 16(3):4713-30. PubMed ID: 25739084 [TBL] [Abstract][Full Text] [Related]
17. Proteome analysis of plastids from developing seeds of Jatropha curcas L. Pinheiro CB; Shah M; Soares EL; Nogueira FC; Carvalho PC; Junqueira M; Araújo GD; Soares AA; Domont GB; Campos FA J Proteome Res; 2013 Nov; 12(11):5137-45. PubMed ID: 24032481 [TBL] [Abstract][Full Text] [Related]
18. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Gutierrez-Gonzalez JJ; Guttikonda SK; Tran LS; Aldrich DL; Zhong R; Yu O; Nguyen HT; Sleper DA Plant Cell Physiol; 2010 Jun; 51(6):936-48. PubMed ID: 20430761 [TBL] [Abstract][Full Text] [Related]
20. Manipulating root water supply elicits major shifts in the shoot proteome. Mirzaei M; Soltani N; Sarhadi E; George IS; Neilson KA; Pascovici D; Shahbazian S; Haynes PA; Atwell BJ; Salekdeh GH J Proteome Res; 2014 Feb; 13(2):517-26. PubMed ID: 24266738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]