BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24094342)

  • 1. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pace of Hybrid Incompatibility Evolution in House Mice.
    Wang RJ; White MA; Payseur BA
    Genetics; 2015 Sep; 201(1):229-42. PubMed ID: 26199234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities.
    Fishman L; Sweigart AL
    Annu Rev Plant Biol; 2018 Apr; 69():707-731. PubMed ID: 29505737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of Reproductive Isolation in Eucalyptus-A Phylogenetic Perspective.
    Larcombe MJ; Holland B; Steane DA; Jones RC; Nicolle D; Vaillancourt RE; Potts BM
    Mol Biol Evol; 2015 Jul; 32(7):1833-46. PubMed ID: 25777461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model.
    Fierst JL; Hansen TF
    Evolution; 2010 Mar; 64(3):675-93. PubMed ID: 19817852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.
    Li C; Wang Z; Zhang J
    Genome Biol Evol; 2013; 5(7):1261-72. PubMed ID: 23742870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of the snowball theory for the rate of evolution of hybrid incompatibilities.
    Matute DR; Butler IA; Turissini DA; Coyne JA
    Science; 2010 Sep; 329(5998):1518-21. PubMed ID: 20847270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities.
    Orr HA; Turelli M
    Evolution; 2001 Jun; 55(6):1085-94. PubMed ID: 11475044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact.
    Lindtke D; Buerkle CA
    Evolution; 2015 Aug; 69(8):1987-2004. PubMed ID: 26174368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limited contribution of reciprocal gene loss to increased speciation rates following whole-genome duplication.
    Muir CD; Hahn MW
    Am Nat; 2015 Jan; 185(1):70-86. PubMed ID: 25560554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential barrier strength and allele frequencies in hybrid zones maintained by sex-biased hybrid incompatibilities.
    Wang RX; Zhao YL
    Heredity (Edinb); 2008 Mar; 100(3):326-36. PubMed ID: 18091771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulating Dobzhansky-Muller incompatibilities: reconciling theory and data.
    Welch JJ
    Evolution; 2004 Jun; 58(6):1145-56. PubMed ID: 15266965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic drift promotes and recombination hinders speciation on holey fitness landscapes.
    Kalirad A; Burch CL; Azevedo RBR
    PLoS Genet; 2024 Jan; 20(1):e1011126. PubMed ID: 38252672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiraling Complexity: A Test of the Snowball Effect in a Computational Model of RNA Folding.
    Kalirad A; Azevedo RBR
    Genetics; 2017 May; 206(1):377-388. PubMed ID: 28007889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitonuclear incompatibilities in allopatric speciation.
    Burton RS
    Cell Mol Life Sci; 2022 Jan; 79(2):103. PubMed ID: 35091831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.
    Leppälä J; Bokma F; Savolainen O
    Genetics; 2013 Jul; 194(3):697-708. PubMed ID: 23666938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus.
    Barbash DA; Awadalla P; Tarone AM
    PLoS Biol; 2004 Jun; 2(6):e142. PubMed ID: 15208709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytonuclear incompatibility contributes to the early stages of speciation.
    Barnard-Kubow KB; So N; Galloway LF
    Evolution; 2016 Dec; 70(12):2752-2766. PubMed ID: 27677969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones.
    McFarlane SE; Jahner JP; Lindtke D; Buerkle CA; Mandeville EG
    Mol Ecol; 2024 Jun; 33(11):e17359. PubMed ID: 38699787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the impermanence of species: The collapse of genetic incompatibilities in hybridizing populations.
    Xiong T; Mallet J
    Evolution; 2022 Nov; 76(11):2498-2512. PubMed ID: 36097352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.