These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24094862)

  • 1. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.
    Zingaro KA; Nicolaou SA; Papoutsakis ET
    Trends Biotechnol; 2013 Nov; 31(11):643-53. PubMed ID: 24094862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Industrial potential of organic solvent tolerant bacteria.
    Sardessai YN; Bhosle S
    Biotechnol Prog; 2004; 20(3):655-60. PubMed ID: 15176865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-based production of C2-C6 platform chemicals.
    Jang YS; Kim B; Shin JH; Choi YJ; Choi S; Song CW; Lee J; Park HG; Lee SY
    Biotechnol Bioeng; 2012 Oct; 109(10):2437-59. PubMed ID: 22766912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing molecules through metabolic engineering.
    Keasling JD
    Science; 2010 Dec; 330(6009):1355-8. PubMed ID: 21127247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.
    Jeon JR; Murugesan K; Nam IH; Chang YS
    Biotechnol Adv; 2013; 31(2):246-56. PubMed ID: 23153459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.
    Torres S; Pandey A; Castro GR
    Biotechnol Adv; 2011; 29(4):442-52. PubMed ID: 21504787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals.
    Mukhopadhyay A
    Trends Microbiol; 2015 Aug; 23(8):498-508. PubMed ID: 26024777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.
    Cuellar MC; Heijnen JJ; van der Wielen LA
    Biotechnol J; 2013 Jun; 8(6):682-9. PubMed ID: 23650260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass.
    Adsul MG; Singhvi MS; Gaikaiwari SA; Gokhale DV
    Bioresour Technol; 2011 Mar; 102(6):4304-12. PubMed ID: 21277771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial systems biology.
    Otero JM; Nielsen J
    Biotechnol Bioeng; 2010 Feb; 105(3):439-60. PubMed ID: 19891008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure- and property-activity relationship models for prediction of microbial toxicity of organic chemicals to activated sludge.
    Nirmalakhandan N; Egemen E; Trevizo C; Xu S
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):112-9. PubMed ID: 9515083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Tolerant mechanisms of bacteria to organic solvents].
    Wang X; Wang S; Li W; Li Y; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):641-9. PubMed ID: 19670630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of fluoroorganic compounds in microorganisms: impacts for the environment and the production of fine chemicals.
    Murphy CD; Clark BR; Amadio J
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):617-29. PubMed ID: 19629474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar flux, water, and land impose limits on biology.
    Jones ME; Banholzer WF
    Biotechnol Bioeng; 2014 Jun; 111(6):1059-61. PubMed ID: 24700397
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis of chemicals by metabolic engineering of microbes.
    Sun X; Shen X; Jain R; Lin Y; Wang J; Sun J; Wang J; Yan Y; Yuan Q
    Chem Soc Rev; 2015 Jun; 44(11):3760-85. PubMed ID: 25940754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies.
    Buschke N; Schäfer R; Becker J; Wittmann C
    Bioresour Technol; 2013 May; 135():544-54. PubMed ID: 23260271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.
    Logan BE; Rabaey K
    Science; 2012 Aug; 337(6095):686-90. PubMed ID: 22879507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.