BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24095012)

  • 1. Pheophytinization kinetics of chlorophyll c under weakly acidic conditions: effects of acrylic acid residue at the 17-position.
    Sadaoka K; Shoji S; Hirota K; Tsukatani Y; Yoshitomi T; Tamiaki H; Kashimura S; Saga Y
    Bioorg Med Chem; 2013 Nov; 21(22):6915-9. PubMed ID: 24095012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-dependent demetalation kinetics of chlorophyll a analogs under acidic conditions.
    Saga Y; Hirai Y; Sadaoka K; Isaji M; Tamiaki H
    Photochem Photobiol; 2013; 89(1):68-73. PubMed ID: 22827616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereochemical determination of the unique acrylate moiety at the 17-position in chlorophylls-c from a diatom Chaetoseros calcitrans and its effect upon electronic absorption properties.
    Mizoguchi T; Nagai C; Kunieda M; Kimura Y; Okamura A; Tamiaki H
    Org Biomol Chem; 2009 May; 7(10):2120-6. PubMed ID: 19421450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions.
    Hirai Y; Kashimura S; Saga Y
    Photochem Photobiol; 2011; 87(2):302-7. PubMed ID: 21143484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin pi-macrocycle.
    Hirai Y; Tamiaki H; Kashimura S; Saga Y
    Photochem Photobiol Sci; 2009 Dec; 8(12):1701-7. PubMed ID: 20024167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes.
    Mysliwa-Kurdziel B; Stecka A; Strzalka K
    Methods Mol Biol; 2012; 875():231-9. PubMed ID: 22573443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early reactions of light-induced protochlorophyllide and chlorophyllide transformations analyzed in vivo at room temperature with a diode array spectrofluorometer.
    Böddi B; Popovic R; Franck F
    J Photochem Photobiol B; 2003 Jan; 69(1):31-9. PubMed ID: 12547494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process.
    Schoefs B; Bertrand M
    FEBS Lett; 2000 Dec; 486(3):243-6. PubMed ID: 11119711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro.
    Daniell H; Rebeiz CA
    Biotechnol Bioeng; 1984 May; 26(5):481-7. PubMed ID: 18553343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of the demetalation kinetics of zinc chlorophyll derivatives possessing different substituents at the 3-position: effects of the electron-withdrawing and electron-donating strength of peripheral substituents.
    Saga Y; Kobashiri Y; Sadaoka K
    Inorg Chem; 2013 Jan; 52(1):204-10. PubMed ID: 23230816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic analysis of desiccation-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves.
    Le Lay P; Böddi B; Kovacevic D; Juneau P; Dewez D; Popovic R
    Plant Physiol; 2001 Sep; 127(1):202-11. PubMed ID: 11553748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies on structural and excited-state properties of modified chlorophyll f with various axial ligands.
    Yamijala SR; Periyasamy G; Pati SK
    J Phys Chem A; 2011 Nov; 115(44):12298-306. PubMed ID: 21954979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protochlorophyllide spectral forms.
    Amirjani MR
    Pak J Biol Sci; 2010 Jun; 13(12):563-76. PubMed ID: 21061907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves.
    Le Lay P; Eullaffroy P; Juneau P; Popovic R
    Plant Cell Physiol; 2000 May; 41(5):565-70. PubMed ID: 10929939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterisation of the light-driven protochlorophyllide oxidoreductase (POR) from Thermosynechococcus elongatus.
    McFarlane MJ; Hunter CN; Heyes DJ
    Photochem Photobiol Sci; 2005 Dec; 4(12):1055-9. PubMed ID: 16307122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demetalation of chlorophyll pigments.
    Saga Y; Tamiaki H
    Chem Biodivers; 2012 Sep; 9(9):1659-83. PubMed ID: 22976960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exclusive observation of the (13R)-enantiomer of chlorophyll-c from a diatom Chaetoseros calcitrans.
    Mizoguchi T; Kimura Y; Tamiaki H
    Photochem Photobiol; 2010; 86(2):311-5. PubMed ID: 20003156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase.
    Heyes DJ; Hunter CN
    Biochemistry; 2004 Jun; 43(25):8265-71. PubMed ID: 15209523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus.
    Nomata J; Terauchi K; Fujita Y
    Biochem Biophys Res Commun; 2016 Feb; 470(3):704-709. PubMed ID: 26774340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stereochemistry of chlorophyll-c₃ from the haptophyte Emiliania huxleyi: the (13²R)-enantiomers of chlorophylls-c are exclusively selected as the photosynthetically active pigments in chromophyte algae.
    Mizoguchi T; Kimura Y; Yoshitomi T; Tamiaki H
    Biochim Biophys Acta; 2011 Nov; 1807(11):1467-73. PubMed ID: 21806961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.