BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 24095033)

  • 1. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization.
    Chao C; Liu J; Wang J; Zhang Y; Zhang B; Zhang Y; Xiang X; Chen R
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10559-64. PubMed ID: 24095033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal.
    Chao C; Guan H; Zhang J; Liu Y; Zhao Y; Zhang B
    Water Sci Technol; 2018 Feb; 77(3-4):809-818. PubMed ID: 29431726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supermagnetically Tuned Halloysite Nanotubes Functionalized with Aminosilane for Covalent Laccase Immobilization.
    Kadam AA; Jang J; Lee DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15492-15501. PubMed ID: 28418639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes.
    Kim M; Jee SC; Sung JS; Kadam AA
    Int J Biol Macromol; 2018 Oct; 118(Pt A):228-237. PubMed ID: 29913193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.
    Aydemir T; Güler S
    Artif Cells Nanomed Biotechnol; 2015; 43(6):425-32. PubMed ID: 26167845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-Grafted Halloysite Nanotubes-Fe
    Kadam AA; Shinde SK; Ghodake GS; Saratale GD; Saratale RG; Sharma B; Hyun S; Sung JS
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.
    Luo J; Meyer AS; Mateiu RV; Kalyani D; Pinelo M
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22894-904. PubMed ID: 25420028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application.
    Bai X; Gu H; Chen W; Shi H; Yang B; Huang X; Zhang Q
    Appl Biochem Biotechnol; 2014 Jul; 173(5):1097-107. PubMed ID: 24760609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization.
    Kadam AA; Jang J; Jee SC; Sung JS; Lee DS
    Carbohydr Polym; 2018 Aug; 194():208-216. PubMed ID: 29801831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halloysite Clay Nanotubes for Enzyme Immobilization.
    Tully J; Yendluri R; Lvov Y
    Biomacromolecules; 2016 Feb; 17(2):615-21. PubMed ID: 26699154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene.
    Fernando Bautista L; Morales G; Sanz R
    Bioresour Technol; 2010 Nov; 101(22):8541-8. PubMed ID: 20599376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies.
    Tavares AP; Silva CG; Dražić G; Silva AM; Loureiro JM; Faria JL
    J Colloid Interface Sci; 2015 Sep; 454():52-60. PubMed ID: 26002339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder.
    Zhang Y; Chen Y; Zhang H; Zhang B; Liu J
    J Inorg Biochem; 2013 Jan; 118():59-64. PubMed ID: 23123339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase-immobilized tannic acid-mediated surface modification of halloysite nanotubes for efficient bisphenol-A degradation.
    Zhang L; Tang W; Ma T; Zhou L; Hui C; Wang X; Wang P; Zhang C; Chen C
    RSC Adv; 2019 Nov; 9(67):38935-38942. PubMed ID: 35540689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application.
    Jana S; Kondakova AV; Shevchenko SN; Sheval EV; Gonchar KA; Timoshenko VY; Vasiliev AN
    Colloids Surf B Biointerfaces; 2017 Mar; 151():249-254. PubMed ID: 28024201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitin-natural clay nanotubes hybrid hydrogel.
    Liu M; Zhang Y; Li J; Zhou C
    Int J Biol Macromol; 2013 Jul; 58():23-30. PubMed ID: 23535366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen.
    Yah WO; Xu H; Soejima H; Ma W; Lvov Y; Takahara A
    J Am Chem Soc; 2012 Jul; 134(29):12134-7. PubMed ID: 22765271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation.
    Luo BH; Hsu CE; Li JH; Zhao LF; Liu MX; Wang XY; Zhou CR
    J Biomed Nanotechnol; 2013 Apr; 9(4):649-58. PubMed ID: 23621025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe(3)O(4) nanoparticle composite.
    Huang J; Xiao H; Li B; Wang J; Jiang D
    Biotechnol Appl Biochem; 2006 May; 44(Pt 2):93-100. PubMed ID: 16420188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.