These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24095061)

  • 41. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch.
    Ishida S; Terasaka N; Katoh T; Suga H
    Nat Chem Biol; 2020 Jun; 16(6):702-709. PubMed ID: 32203413
    [TBL] [Abstract][Full Text] [Related]  

  • 44. tRNA regulation of gene expression: interactions of an mRNA 5'-UTR with a regulatory tRNA.
    Nelson AR; Henkin TM; Agris PF
    RNA; 2006 Jul; 12(7):1254-61. PubMed ID: 16741230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor.
    Francin M; Mirande M
    Biochemistry; 2006 Aug; 45(33):10153-60. PubMed ID: 16906773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop.
    Soderberg T; Poulter CD
    Biochemistry; 2000 May; 39(21):6546-53. PubMed ID: 10828971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase.
    Torres-Larios A; Dock-Bregeon AC; Romby P; Rees B; Sankaranarayanan R; Caillet J; Springer M; Ehresmann C; Ehresmann B; Moras D
    Nat Struct Biol; 2002 May; 9(5):343-7. PubMed ID: 11953757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
    Zhang J; Ferré-D'Amaré AR
    Mol Cell; 2014 Jul; 55(1):148-55. PubMed ID: 24954903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Serine Biosynthesis of
    Zhang H; Li Q; Li Y; Chen S
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro.
    Grundy FJ; Henkin TM
    J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Specificity of tRNA-mRNA interactions in Bacillus subtilis tyrS antitermination.
    Grundy FJ; Hodil SE; Rollins SM; Henkin TM
    J Bacteriol; 1997 Apr; 179(8):2587-94. PubMed ID: 9098057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene.
    Grundy FJ; Collins JA; Rollins SM; Henkin TM
    RNA; 2000 Aug; 6(8):1131-41. PubMed ID: 10943892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SmpB: a protein that binds to double-stranded segments in tmRNA and tRNA.
    Wower J; Zwieb CW; Hoffman DW; Wower IK
    Biochemistry; 2002 Jul; 41(28):8826-36. PubMed ID: 12102625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome.
    Grundy FJ; Winkler WC; Henkin TM
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11121-6. PubMed ID: 12165569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Permutation of a pair of tertiary nucleotides in a transfer RNA.
    Hou YM; Sterner T; Jansen M
    Biochemistry; 1995 Mar; 34(9):2978-84. PubMed ID: 7534478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing.
    Du X; Wang ED
    Nucleic Acids Res; 2003 Jun; 31(11):2865-72. PubMed ID: 12771213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-affinity recognition of specific tRNAs by an mRNA anticodon-binding groove.
    Suddala KC; Zhang J
    Nat Struct Mol Biol; 2019 Dec; 26(12):1114-1122. PubMed ID: 31792448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome.
    Allnér O; Nilsson L
    RNA; 2011 Dec; 17(12):2177-88. PubMed ID: 22028366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. tRNA structure and evolution and standardization to the three nucleotide genetic code.
    Pak D; Root-Bernstein R; Burton ZF
    Transcription; 2017 Aug; 8(4):205-219. PubMed ID: 28632998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.