BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

756 related articles for article (PubMed ID: 24095279)

  • 41. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids.
    Gollwitzer P; Grützmacher N; Wilhelm S; Kümmel D; Demetriades C
    Nat Cell Biol; 2022 Sep; 24(9):1394-1406. PubMed ID: 36097072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism. Differential regulation of mTORC1 by leucine and glutamine.
    Jewell JL; Kim YC; Russell RC; Yu FX; Park HW; Plouffe SW; Tagliabracci VS; Guan KL
    Science; 2015 Jan; 347(6218):194-8. PubMed ID: 25567907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
    Anandapadamanaban M; Masson GR; Perisic O; Berndt A; Kaufman J; Johnson CM; Santhanam B; Rogala KB; Sabatini DM; Williams RL
    Science; 2019 Oct; 366(6462):203-210. PubMed ID: 31601764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
    Egri SB; Ouch C; Chou HT; Yu Z; Song K; Xu C; Shen K
    Mol Cell; 2022 May; 82(10):1836-1849.e5. PubMed ID: 35338845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
    Shen K; Rogala KB; Chou HT; Huang RK; Yu Z; Sabatini DM
    Cell; 2019 Nov; 179(6):1319-1329.e8. PubMed ID: 31704029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rag GTPases are cardioprotective by regulating lysosomal function.
    Kim YC; Park HW; Sciarretta S; Mo JS; Jewell JL; Russell RC; Wu X; Sadoshima J; Guan KL
    Nat Commun; 2014 Jul; 5():4241. PubMed ID: 24980141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amino acid signalling upstream of mTOR.
    Jewell JL; Russell RC; Guan KL
    Nat Rev Mol Cell Biol; 2013 Mar; 14(3):133-9. PubMed ID: 23361334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The amino acid transporter SLC38A9 regulates MTORC1 and autophagy.
    Jin M; Klionsky DJ
    Autophagy; 2015; 11(10):1709-10. PubMed ID: 26506891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid regulation of TOR complex 1.
    Avruch J; Long X; Ortiz-Vega S; Rapley J; Papageorgiou A; Dai N
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E592-602. PubMed ID: 18765678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rags to riches: Amino acid sensing by the Rag GTPases in health and disease.
    Brady OA; Diab HI; Puertollano R
    Small GTPases; 2016 Oct; 7(4):197-206. PubMed ID: 27580159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
    Rebsamen M; Pochini L; Stasyk T; de Araújo ME; Galluccio M; Kandasamy RK; Snijder B; Fauster A; Rudashevskaya EL; Bruckner M; Scorzoni S; Filipek PA; Huber KV; Bigenzahn JW; Heinz LX; Kraft C; Bennett KL; Indiveri C; Huber LA; Superti-Furga G
    Nature; 2015 Mar; 519(7544):477-81. PubMed ID: 25561175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism.
    Alesi N; Akl EW; Khabibullin D; Liu HJ; Nidhiry AS; Garner ER; Filippakis H; Lam HC; Shi W; Viswanathan SR; Morroni M; Ferguson SM; Henske EP
    Nat Commun; 2021 Jul; 12(1):4245. PubMed ID: 34253722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss.
    Asrani K; Woo J; Mendes AA; Schaffer E; Vidotto T; Villanueva CR; Feng K; Oliveira L; Murali S; Liu HB; Salles DC; Lam B; Argani P; Lotan TL
    Nat Commun; 2022 Nov; 13(1):6808. PubMed ID: 36357396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation.
    Kim SH; Choi JH; Wang P; Go CD; Hesketh GG; Gingras AC; Jafarnejad SM; Sonenberg N
    Mol Cell; 2021 Jan; 81(2):398-407.e4. PubMed ID: 33340489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation.
    Gong R; Li L; Liu Y; Wang P; Yang H; Wang L; Cheng J; Guan KL; Xu Y
    Genes Dev; 2011 Aug; 25(16):1668-73. PubMed ID: 21816923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.
    Sancak Y; Peterson TR; Shaul YD; Lindquist RA; Thoreen CC; Bar-Peled L; Sabatini DM
    Science; 2008 Jun; 320(5882):1496-501. PubMed ID: 18497260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural basis for the docking of mTORC1 on the lysosomal surface.
    Rogala KB; Gu X; Kedir JF; Abu-Remaileh M; Bianchi LF; Bottino AMS; Dueholm R; Niehaus A; Overwijn D; Fils AP; Zhou SX; Leary D; Laqtom NN; Brignole EJ; Sabatini DM
    Science; 2019 Oct; 366(6464):468-475. PubMed ID: 31601708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue-specific expression differences in Ras-related GTP-binding proteins in male rats.
    Kincheloe GN; Roberson PA; Jefferson LS; Kimball SR
    Physiol Rep; 2024 Feb; 12(3):e15928. PubMed ID: 38296461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.