BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 24095279)

  • 61. Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex.
    Hirst J; Hesketh GG; Gingras AC; Robinson MS
    J Cell Biol; 2021 Feb; 220(2):. PubMed ID: 33464297
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.
    Kim SG; Hoffman GR; Poulogiannis G; Buel GR; Jang YJ; Lee KW; Kim BY; Erikson RL; Cantley LC; Choo AY; Blenis J
    Mol Cell; 2013 Jan; 49(1):172-85. PubMed ID: 23142078
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The yoga of Rag GTPases: Dynamic structural poses confer amino acid sensing by mTORC1.
    Fingar DC
    J Biol Chem; 2021 Sep; 297(3):101103. PubMed ID: 34419448
    [TBL] [Abstract][Full Text] [Related]  

  • 64. dRAGging amino acid-mTORC1 signaling by SH3BP4.
    Kim YM; Kim DH
    Mol Cells; 2013 Jan; 35(1):1-6. PubMed ID: 23274731
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RAG GTPases in nutrient-mediated TOR signaling pathway.
    Kim E; Guan KL
    Cell Cycle; 2009 Apr; 8(7):1014-8. PubMed ID: 19270521
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
    Wang X; Fonseca BD; Tang H; Liu R; Elia A; Clemens MJ; Bommer UA; Proud CG
    J Biol Chem; 2008 Nov; 283(45):30482-92. PubMed ID: 18676370
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2.
    Demetriades C; Doumpas N; Teleman AA
    Cell; 2014 Feb; 156(4):786-99. PubMed ID: 24529380
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rag Ubiquitination Recruits a GATOR1: Attenuation of Amino Acid-Induced mTORC1 Signaling.
    Fingar DC
    Mol Cell; 2015 Jun; 58(5):713-5. PubMed ID: 26046644
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome.
    Napolitano G; Di Malta C; Esposito A; de Araujo MEG; Pece S; Bertalot G; Matarese M; Benedetti V; Zampelli A; Stasyk T; Siciliano D; Venuta A; Cesana M; Vilardo C; Nusco E; Monfregola J; Calcagnì A; Di Fiore PP; Huber LA; Ballabio A
    Nature; 2020 Sep; 585(7826):597-602. PubMed ID: 32612235
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of FLCN Phosphorylation in Insulin-Mediated mTORC1 Activation and Tumorigenesis.
    Wang G; Chen L; Lei X; Qin S; Geng H; Zheng Y; Xia C; Yao J; Meng T; Deng L
    Adv Sci (Weinh); 2023 Jun; 10(17):e2206826. PubMed ID: 37083230
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9.
    Fromm SA; Lawrence RE; Hurley JH
    Nat Struct Mol Biol; 2020 Nov; 27(11):1017-1023. PubMed ID: 32868926
    [TBL] [Abstract][Full Text] [Related]  

  • 72. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase.
    Zoncu R; Bar-Peled L; Efeyan A; Wang S; Sancak Y; Sabatini DM
    Science; 2011 Nov; 334(6056):678-83. PubMed ID: 22053050
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation.
    Jansen RM; Peruzzo R; Fromm SA; Yokom AL; Zoncu R; Hurley JH
    Sci Adv; 2022 Sep; 8(37):eadd2926. PubMed ID: 36103527
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability.
    Shen K; Choe A; Sabatini DM
    Mol Cell; 2017 Nov; 68(3):552-565.e8. PubMed ID: 29056322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases.
    Chia KH; Fukuda T; Sofyantoro F; Matsuda T; Amai T; Shiozaki K
    Elife; 2017 Dec; 6():. PubMed ID: 29199950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sestrin2 is a leucine sensor for the mTORC1 pathway.
    Wolfson RL; Chantranupong L; Saxton RA; Shen K; Scaria SM; Cantor JR; Sabatini DM
    Science; 2016 Jan; 351(6268):43-8. PubMed ID: 26449471
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1.
    Panchaud N; Péli-Gulli MP; De Virgilio C
    Sci Signal; 2013 May; 6(277):ra42. PubMed ID: 23716719
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Recent advances in understanding of amino acid signaling to mTORC1 activation.
    Zhuang Y; Wang XX; He J; He S; Yin Y
    Front Biosci (Landmark Ed); 2019 Mar; 24(5):971-982. PubMed ID: 30844724
    [TBL] [Abstract][Full Text] [Related]  

  • 79. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1.
    Dibble CC; Elis W; Menon S; Qin W; Klekota J; Asara JM; Finan PM; Kwiatkowski DJ; Murphy LO; Manning BD
    Mol Cell; 2012 Aug; 47(4):535-46. PubMed ID: 22795129
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RagA, but not RagB, is essential for embryonic development and adult mice.
    Efeyan A; Schweitzer LD; Bilate AM; Chang S; Kirak O; Lamming DW; Sabatini DM
    Dev Cell; 2014 May; 29(3):321-9. PubMed ID: 24768164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.