These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24095753)
1. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Durán-Lara E; Guzmán L; John A; Fuentes E; Alarcón M; Palomo I; Santos LS Eur J Med Chem; 2013 Nov; 69():601-8. PubMed ID: 24095753 [TBL] [Abstract][Full Text] [Related]
2. Targeting Breast Cancer Cells with G4 PAMAM Dendrimers and Valproic Acid Derivative Complexes. Muñoz AM; Fragoso-Vázquez MJ; Martel BP; Chávez-Blanco A; Dueñas-González A; R García-Sánchez J; Bello M; Romero-Castro A; Correa-Basurto J Anticancer Agents Med Chem; 2020; 20(15):1857-1872. PubMed ID: 32324521 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of PAMAM dendrimer derivatives with enhanced buffering capacity and remarkable gene transfection efficiency. Yu GS; Bae YM; Choi H; Kong B; Choi IS; Choi JS Bioconjug Chem; 2011 Jun; 22(6):1046-55. PubMed ID: 21528924 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle Effects on Human Platelets in Vitro: A Comparison between PAMAM and Triazine Dendrimers. Enciso AE; Neun B; Rodriguez J; Ranjan AP; Dobrovolskaia MA; Simanek EE Molecules; 2016 Mar; 21(4):428. PubMed ID: 27043508 [TBL] [Abstract][Full Text] [Related]
5. Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. Martínez-Muñoz A; Bello M; Romero-Castro A; Rodríguez-Fonseca RA; Rodrigues J; Sánchez-Espinosa VA; Correa-Basurto J J Mol Graph Model; 2017 Sep; 76():330-341. PubMed ID: 28759825 [TBL] [Abstract][Full Text] [Related]
6. α-Tocopherol Succinate-Anchored PEGylated Poly(amidoamine) Dendrimer for the Delivery of Paclitaxel: Assessment of in Vitro and in Vivo Therapeutic Efficacy. Bhatt H; Kiran Rompicharla SV; Ghosh B; Biswas S Mol Pharm; 2019 Apr; 16(4):1541-1554. PubMed ID: 30817166 [TBL] [Abstract][Full Text] [Related]
7. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. Zeng Y; Kurokawa Y; Win-Shwe TT; Zeng Q; Hirano S; Zhang Z; Sone H J Toxicol Sci; 2016; 41(3):351-70. PubMed ID: 27193728 [TBL] [Abstract][Full Text] [Related]
8. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. Liu H; Wang H; Yang W; Cheng Y J Am Chem Soc; 2012 Oct; 134(42):17680-7. PubMed ID: 23050493 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of efficient gene delivery systems by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Evaluation of transfection efficiency and cytotoxicity in cancerous and mesenchymal stem cells. Ayatollahi S; Hashemi M; Oskuee RK; Salmasi Z; Mokhtarzadeh A; Alibolandi M; Abnous K; Ramezani M J Biomater Appl; 2015 Nov; 30(5):632-48. PubMed ID: 26265706 [TBL] [Abstract][Full Text] [Related]
12. Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers. Halets I; Shcharbin D; Klajnert B; Bryszewska M Int J Pharm; 2013 Sep; 454(1):1-3. PubMed ID: 23831196 [TBL] [Abstract][Full Text] [Related]
13. How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of "fibrinogen aggregates" in the presence of polycations. Watala C; Karolczak K; Kassassir H; Talar M; Przygodzki T; Maczynska K; Labieniec-Watala M Int J Pharm; 2016 Apr; 503(1-2):247-61. PubMed ID: 26319628 [TBL] [Abstract][Full Text] [Related]
15. Wei X; Liu Z; Zhao Z Hell J Nucl Med; 2019; 22(1):78-79. PubMed ID: 30968863 [TBL] [Abstract][Full Text] [Related]
16. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Thanh VM; Nguyen TH; Tran TV; Ngoc UP; Ho MN; Nguyen TT; Chau YNT; Le VT; Tran NQ; Nguyen CK; Nguyen DH Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():291-298. PubMed ID: 29025661 [TBL] [Abstract][Full Text] [Related]
17. Bundling and aggregation of DNA by cationic dendrimers. Froehlich E; Mandeville JS; Weinert CM; Kreplak L; Tajmir-Riahi HA Biomacromolecules; 2011 Feb; 12(2):511-7. PubMed ID: 21192723 [TBL] [Abstract][Full Text] [Related]
18. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Zhou Y; Li J; Lu F; Deng J; Zhang J; Fang P; Peng X; Zhou SF Drug Des Devel Ther; 2015; 9():2635-45. PubMed ID: 25999697 [TBL] [Abstract][Full Text] [Related]
19. Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Shakhbazau A; Isayenka I; Kartel N; Goncharova N; Seviaryn I; Kosmacheva S; Potapnev M; Shcharbin D; Bryszewska M Int J Pharm; 2010 Jan; 383(1-2):228-35. PubMed ID: 19770028 [TBL] [Abstract][Full Text] [Related]
20. PAMAM G4 dendrimers affect the aggregation of α-synuclein. Milowska K; Malachowska M; Gabryelak T Int J Biol Macromol; 2011 Jun; 48(5):742-6. PubMed ID: 21382406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]