These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24095777)
1. Molecular evolution of the HD-ZIP I gene family in legume genomes. Li Z; Jiang H; Zhou L; Deng L; Lin Y; Peng X; Yan H; Cheng B Gene; 2014 Jan; 533(1):218-28. PubMed ID: 24095777 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. Wang Z; Cheng K; Wan L; Yan L; Jiang H; Liu S; Lei Y; Liao B BMC Genomics; 2015 Dec; 16():1053. PubMed ID: 26651343 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus. Liu W; Fu R; Li Q; Li J; Wang L; Ren Z Gene; 2013 Dec; 531(2):279-87. PubMed ID: 24013079 [TBL] [Abstract][Full Text] [Related]
4. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Aso K; Kato M; Banks JA; Hasebe M Mol Biol Evol; 1999 Apr; 16(4):544-52. PubMed ID: 10331279 [TBL] [Abstract][Full Text] [Related]
5. Evolution and microsynteny of the apyrase gene family in three legume genomes. Cannon SB; McCombie WR; Sato S; Tabata S; Denny R; Palmer L; Katari M; Young ND; Stacey G Mol Genet Genomics; 2003 Dec; 270(4):347-61. PubMed ID: 14598165 [TBL] [Abstract][Full Text] [Related]
6. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Sakakibara K; Nishiyama T; Kato M; Hasebe M Mol Biol Evol; 2001 Apr; 18(4):491-502. PubMed ID: 11264400 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica). Zhang CH; Ma RJ; Shen ZJ; Sun X; Korir NK; Yu ML Genet Mol Res; 2014 Apr; 13(2):2654-68. PubMed ID: 24782054 [TBL] [Abstract][Full Text] [Related]
8. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803 [TBL] [Abstract][Full Text] [Related]
9. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Cannon SB; Sterck L; Rombauts S; Sato S; Cheung F; Gouzy J; Wang X; Mudge J; Vasdewani J; Schiex T; Spannagl M; Monaghan E; Nicholson C; Humphray SJ; Schoof H; Mayer KF; Rogers J; Quétier F; Oldroyd GE; Debellé F; Cook DR; Retzel EF; Roe BA; Town CD; Tabata S; Van de Peer Y; Young ND Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14959-64. PubMed ID: 17003129 [TBL] [Abstract][Full Text] [Related]
10. Legume genomes: more than peas in a pod. Young ND; Mudge J; Ellis TH Curr Opin Plant Biol; 2003 Apr; 6(2):199-204. PubMed ID: 12667879 [TBL] [Abstract][Full Text] [Related]
11. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Pfeil BE; Schlueter JA; Shoemaker RC; Doyle JJ Syst Biol; 2005 Jun; 54(3):441-54. PubMed ID: 16012110 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). Hu R; Chi X; Chai G; Kong Y; He G; Wang X; Shi D; Zhang D; Zhou G PLoS One; 2012; 7(2):e31149. PubMed ID: 22359569 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus. Neupane A; Nepal MP; Benson BV; Macarthur KJ; Piya S Plant Signal Behav; 2013 Nov; 8(11):e27189. PubMed ID: 24317362 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation. Ge XX; Liu Z; Wu XM; Chai LJ; Guo WW Gene; 2015 Dec; 574(1):61-8. PubMed ID: 26232336 [TBL] [Abstract][Full Text] [Related]
15. Comparative sequence analysis of nitrogen fixation-related genes in six legumes. Kim DH; Parupalli S; Azam S; Lee SH; Varshney RK Front Plant Sci; 2013; 4():300. PubMed ID: 23986765 [TBL] [Abstract][Full Text] [Related]
16. LegumeIP 2.0--a platform for the study of gene function and genome evolution in legumes. Li J; Dai X; Zhuang Z; Zhao PX Nucleic Acids Res; 2016 Jan; 44(D1):D1189-94. PubMed ID: 26578557 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Li Y; Bai B; Wen F; Zhao M; Xia Q; Yang DH; Wang G Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31366162 [TBL] [Abstract][Full Text] [Related]
18. Evolution of the class III HD-Zip gene family in land plants. Prigge MJ; Clark SE Evol Dev; 2006; 8(4):350-61. PubMed ID: 16805899 [TBL] [Abstract][Full Text] [Related]
19. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. Zheng F; Wu H; Zhang R; Li S; He W; Wong FL; Li G; Zhao S; Lam HM BMC Genomics; 2016 May; 17():402. PubMed ID: 27229309 [TBL] [Abstract][Full Text] [Related]
20. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]