These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24095777)
21. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling. Bhattacharjee A; Ghangal R; Garg R; Jain M PLoS One; 2015; 10(3):e0119198. PubMed ID: 25745864 [TBL] [Abstract][Full Text] [Related]
22. DNA-binding specificity of the homeodomain-leucine zipper domain. Sessa G; Morelli G; Ruberti I J Mol Biol; 1997 Dec; 274(3):303-9. PubMed ID: 9405140 [TBL] [Abstract][Full Text] [Related]
23. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Guillet-Claude C; Isabel N; Pelgas B; Bousquet J Mol Biol Evol; 2004 Dec; 21(12):2232-45. PubMed ID: 15317878 [TBL] [Abstract][Full Text] [Related]
24. The model legume genomes. Cannon SB Methods Mol Biol; 2013; 1069():1-14. PubMed ID: 23996304 [TBL] [Abstract][Full Text] [Related]
25. Multiple Links between HD-Zip Proteins and Hormone Networks. Sessa G; Carabelli M; Possenti M; Morelli G; Ruberti I Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30558150 [TBL] [Abstract][Full Text] [Related]
26. Conserved homeodomain cysteines confer redox sensitivity and influence the DNA binding properties of plant class III HD-Zip proteins. Comelli RN; Gonzalez DH Arch Biochem Biophys; 2007 Nov; 467(1):41-7. PubMed ID: 17900520 [TBL] [Abstract][Full Text] [Related]
27. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716 [TBL] [Abstract][Full Text] [Related]
28. Genome-wide analysis and expression profiling of the HD-ZIP gene family in kiwifruit. Ye KY; Li JW; Wang FM; Gao JY; Liu CX; Gong HJ; Qi BB; Liu PP; Jiang QS; Tang JM; Mo QH BMC Genomics; 2024 Apr; 25(1):354. PubMed ID: 38594645 [TBL] [Abstract][Full Text] [Related]
29. The HD-ZIP Gene Family in Watermelon: Genome-Wide Identification and Expression Analysis under Abiotic Stresses. Yan X; Yue Z; Pan X; Si F; Li J; Chen X; Li X; Luan F; Yang J; Zhang X; Wei C Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553509 [TBL] [Abstract][Full Text] [Related]
30. The true story of the HD-Zip family. Ariel FD; Manavella PA; Dezar CA; Chan RL Trends Plant Sci; 2007 Sep; 12(9):419-26. PubMed ID: 17698401 [TBL] [Abstract][Full Text] [Related]
31. Phylogenetic signal variation in the genomes of Medicago (Fabaceae). Yoder JB; Briskine R; Mudge J; Farmer A; Paape T; Steele K; Weiblen GD; Bharti AK; Zhou P; May GD; Young ND; Tiffin P Syst Biol; 2013 May; 62(3):424-38. PubMed ID: 23417680 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide identification, characterization and expression analysis of the HD-Zip gene family in the stem development of the woody plant Li L; Zheng T; Zhuo X; Li S; Qiu L; Wang J; Cheng T; Zhang Q PeerJ; 2019; 7():e7499. PubMed ID: 31410318 [TBL] [Abstract][Full Text] [Related]
34. Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function. Turchi L; Carabelli M; Ruzza V; Possenti M; Sassi M; Peñalosa A; Sessa G; Salvi S; Forte V; Morelli G; Ruberti I Development; 2013 May; 140(10):2118-29. PubMed ID: 23578926 [TBL] [Abstract][Full Text] [Related]
35. Lotus japonicus: legume research in the fast lane. Udvardi MK; Tabata S; Parniske M; Stougaard J Trends Plant Sci; 2005 May; 10(5):222-8. PubMed ID: 15882654 [TBL] [Abstract][Full Text] [Related]
36. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Agalou A; Purwantomo S; Overnäs E; Johannesson H; Zhu X; Estiati A; de Kam RJ; Engström P; Slamet-Loedin IH; Zhu Z; Wang M; Xiong L; Meijer AH; Ouwerkerk PB Plant Mol Biol; 2008 Jan; 66(1-2):87-103. PubMed ID: 17999151 [TBL] [Abstract][Full Text] [Related]
37. Computational identification and characterization of novel genes from legumes. Graham MA; Silverstein KA; Cannon SB; VandenBosch KA Plant Physiol; 2004 Jul; 135(3):1179-97. PubMed ID: 15266052 [TBL] [Abstract][Full Text] [Related]
38. Genome-enabled insights into legume biology. Young ND; Bharti AK Annu Rev Plant Biol; 2012; 63():283-305. PubMed ID: 22404476 [TBL] [Abstract][Full Text] [Related]
39. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species. Ren L; Huang W; Cannon SB New Phytol; 2019 Sep; 223(4):2090-2103. PubMed ID: 30834536 [TBL] [Abstract][Full Text] [Related]
40. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. Perry AS; Wolfe KH J Mol Evol; 2002 Nov; 55(5):501-8. PubMed ID: 12399924 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]