BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24095853)

  • 1. Grasp posture planning during multi-segment object manipulation tasks - interaction between cognitive and biomechanical factors.
    Seegelke C; Hughes CM; Knoblauch A; Schack T
    Acta Psychol (Amst); 2013 Nov; 144(3):513-21. PubMed ID: 24095853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of reducing intermediate target constraints on grasp posture planning during a three-segment object manipulation task.
    Seegelke C; Hughes CM; Knoblauch A; Schack T
    Exp Brain Res; 2015 Feb; 233(2):529-38. PubMed ID: 25370347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual differences in motor planning during a multi-segment object manipulation task.
    Seegelke C; Hughes CM; Schütz C; Schack T
    Exp Brain Res; 2012 Oct; 222(1-2):125-36. PubMed ID: 22885998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task.
    Seegelke C; Hughes CM; Schack T
    Exp Brain Res; 2011 Nov; 215(1):65-75. PubMed ID: 21938544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbations in action goal influence bimanual grasp posture planning.
    Hughes CM; Seegelke C
    J Mot Behav; 2013; 45(6):473-8. PubMed ID: 24006878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.
    Mathew H; Kunde W; Herbort O
    Exp Brain Res; 2017 May; 235(5):1397-1409. PubMed ID: 28233050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing planning of a familiar grasp to an object: what it is to pick a cup.
    Rounis E; Zhang Z; Pizzamiglio G; Duta M; Humphreys G
    Exp Brain Res; 2017 Apr; 235(4):1281-1296. PubMed ID: 28204861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-task interference in action programming and action planning - Evidence from the end-state comfort effect.
    Löhr-Limpens M; Göhringer F; Schenk T
    Acta Psychol (Amst); 2022 Aug; 228():103637. PubMed ID: 35690027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex.
    Wood DK; Chouinard PA; Major AJ; Goodale MA
    Cortex; 2017 Dec; 97():202-220. PubMed ID: 27477623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of cognitive, kinematic, and dynamic factors to anticipatory grasp selection.
    Herbort O; Butz MV; Kunde W
    Exp Brain Res; 2014 Jun; 232(6):1677-88. PubMed ID: 24534913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-order grasp planning reflects sensitivity to inertial factors.
    Wagman JB; Abney DH; Rosenbaum DA
    Hum Mov Sci; 2018 Feb; 57():451-460. PubMed ID: 29074308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrections in grasp posture in response to modifications of action goals.
    Hughes CM; Seegelke C; Spiegel MA; Oehmichen C; Hammes J; Schack T
    PLoS One; 2012; 7(9):e43015. PubMed ID: 22970119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choosing between alternative wrist postures: action planning needs perception.
    Dijkerman HC; McIntosh RD; Schindler I; Nijboer TC; Milner AD
    Neuropsychologia; 2009 May; 47(6):1476-82. PubMed ID: 19114051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Habit outweighs planning in grasp selection for object manipulation.
    Herbort O; Mathew H; Kunde W
    Cogn Psychol; 2017 Feb; 92():127-140. PubMed ID: 27951435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of multiple planning constraints on the development of grasp posture planning in 6- to 10-year-old children.
    Stöckel T; Hughes CM
    Dev Psychol; 2015 Sep; 51(9):1254-61. PubMed ID: 26192045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Problems in planning bimanually incongruent grasp postures relate to simultaneous response specification processes.
    Hughes CM; Seegelke C; Reissig P
    Brain Cogn; 2014 Jun; 87():22-9. PubMed ID: 24650762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasp: combined contribution of object properties and task constraints on hand and finger posture.
    Touvet F; Roby-Brami A; Maier MA; Eskiizmirliler S
    Exp Brain Res; 2014 Oct; 232(10):3055-67. PubMed ID: 24888535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Too much anticipation? Large anticipatory adjustments of grasping movements to minimal object manipulations.
    Herbort O
    Hum Mov Sci; 2015 Aug; 42():100-16. PubMed ID: 26004123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.
    Mason CR; Theverapperuma LS; Hendrix CM; Ebner TJ
    J Neurophysiol; 2004 Jun; 91(6):2826-37. PubMed ID: 14762155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural substrates of knowledge of hand postures for object grasping and functional object use: evidence from fMRI.
    Buxbaum LJ; Kyle KM; Tang K; Detre JA
    Brain Res; 2006 Oct; 1117(1):175-85. PubMed ID: 16962075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.