These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 24095965)

  • 21. Kinetic signatures of metals in the presence of Suwannee River fulvic acid.
    Levy JL; Zhang H; Davison W; Galceran J; Puy J
    Environ Sci Technol; 2012 Mar; 46(6):3335-42. PubMed ID: 22352943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Humic acid-inspired hybrid materials as heavy metal absorbents.
    Stathi P; Deligiannakis Y
    J Colloid Interface Sci; 2010 Nov; 351(1):239-47. PubMed ID: 20705298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of heavy metal ions from water by complexation-assisted ultrafiltration.
    Trivunac K; Stevanovic S
    Chemosphere; 2006 Jun; 64(3):486-91. PubMed ID: 16423376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Kuypers S; Agathos SN; Diels L
    Water Res; 2005 Sep; 39(15):3531-40. PubMed ID: 16095659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of fulvic acid from water electrochemically using active carbon fiber electrode.
    Yang J; Jia J; Liao J; Wang Y
    Water Res; 2004 Dec; 38(20):4353-60. PubMed ID: 15556210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of macromolecular humic/fulvic acid on Cd(II) adsorption onto reed-derived biochar as compared with tannic acid.
    Wang Y; Li Y; Zhang Y; Wei W
    Int J Biol Macromol; 2019 Aug; 134():43-55. PubMed ID: 31075327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc.
    Chang Chien SW; Wang MC; Huang CC
    Chemosphere; 2006 Aug; 64(8):1353-61. PubMed ID: 16490235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of chloroform formation from humic and fulvic acid chlorination.
    Iriarte-Velasco U; Alvarez-Uriarte JI; González-Velasco JR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1495-508. PubMed ID: 16835106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorbability and photocatalytic degradability of humic substances in water on Ti-modified silica.
    Moriguchi T; Tahara M; Yaguchi K
    J Colloid Interface Sci; 2006 May; 297(2):678-86. PubMed ID: 16330037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials.
    Chandran DG; Muruganandam L; Biswas R
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110010-110046. PubMed ID: 37804379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent.
    Zhang W; Li Y; Su Y; Mao K; Wang Q
    J Hazard Mater; 2012 May; 215-216():252-8. PubMed ID: 22436342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.
    Norris MJ; Pulford ID; Haynes H; Dorea CC; Phoenix VR
    Water Sci Technol; 2013; 68(3):674-80. PubMed ID: 23925197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton binding by humic and fulvic acids from pig slurry and amended soils.
    Plaza C; García-Gil JC; Polo A; Senesi N; Brunetti G
    J Environ Qual; 2005; 34(3):1131-7. PubMed ID: 15888899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade.
    Wen J; Fang Y; Zeng G
    Chemosphere; 2018 Jun; 201():627-643. PubMed ID: 29544217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of insoluble heavy metal sulfides from water.
    Banfalvi G
    Chemosphere; 2006 May; 63(7):1231-4. PubMed ID: 16297963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of graphene oxide nanomaterials from aqueous media via coagulation: Effects of water chemistry and natural organic matter.
    Duan L; Hao R; Xu Z; He X; Adeleye AS; Li Y
    Chemosphere; 2017 Feb; 168():1051-1057. PubMed ID: 27816284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.
    Jovanovic M; Rajic N; Obradovic B
    J Hazard Mater; 2012 Sep; 233-234():57-64. PubMed ID: 22818175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.