BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24095996)

  • 1. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure.
    Yang L; Wang G; Cheng Z; Liu Y; Shen Z; Luo C
    J Hazard Mater; 2013 Nov; 262():561-70. PubMed ID: 24095996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils.
    Komárek M; Vanek A; Mrnka L; Sudová R; Száková J; Tejnecký V; Chrastný V
    Environ Pollut; 2010 Jul; 158(7):2428-38. PubMed ID: 20452106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combined effect of decabromodiphenyl ether (BDE-209) and copper (Cu) on soil enzyme activities and microbial community structure.
    Zhang W; Zhang M; An S; Lin K; Li H; Cui C; Fu R; Zhu J
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):358-369. PubMed ID: 22717664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process.
    Luo CL; Shen ZG; Li XD
    Int J Phytoremediation; 2007; 9(3):181-96. PubMed ID: 18246767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil.
    Luo C; Wang S; Wang Y; Yang R; Zhang G; Shen Z
    J Hazard Mater; 2015 Apr; 286():379-85. PubMed ID: 25658198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils.
    Fang L; Wang M; Cai L; Cang L
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14627-14636. PubMed ID: 28452034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal leaching along soil profiles after the EDDS application--a field study.
    Wang A; Luo C; Yang R; Chen Y; Shen Z; Li X
    Environ Pollut; 2012 May; 164():204-10. PubMed ID: 22366349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.
    Tandy S; Ammann A; Schulin R; Nowack B
    Environ Pollut; 2006 Jul; 142(2):191-9. PubMed ID: 16338042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.
    Chen Y; Wang C; Wang G; Luo C; Mao Y; Shen Z; Li X
    Environ Toxicol Chem; 2008 Apr; 27(4):888-96. PubMed ID: 18333687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insight into the interactions of EDDS with copper in the rhizosphere of polluted soils.
    Zhao YP; Cui JL; Chan TS; Chen YH; Li XD
    Environ Pollut; 2020 Dec; 267():115453. PubMed ID: 33254714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria.
    Ju W; Duan C; Liu L; Jin X; Bravo-Ruiseco G; Mei Y; Fang L
    Chemosphere; 2022 Jan; 287(Pt 3):132288. PubMed ID: 34555581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual effects of EDDS leachates on plants during EDDS-assisted phytoremediation of copper contaminated soil.
    Yang L; Luo C; Liu Y; Quan L; Chen Y; Shen Z
    Sci Total Environ; 2013 Feb; 444():263-70. PubMed ID: 23274245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.