These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
581 related articles for article (PubMed ID: 24096019)
1. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. Chen CC; Sheeran PS; Wu SY; Olumolade OO; Dayton PA; Konofagou EE J Control Release; 2013 Dec; 172(3):795-804. PubMed ID: 24096019 [TBL] [Abstract][Full Text] [Related]
2. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery. Wu SY; Fix SM; Arena CB; Chen CC; Zheng W; Olumolade OO; Papadopoulou V; Novell A; Dayton PA; Konofagou EE Phys Med Biol; 2018 Jan; 63(3):035002. PubMed ID: 29260735 [TBL] [Abstract][Full Text] [Related]
3. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Sun T; Samiotaki G; Wang S; Acosta C; Chen CC; Konofagou EE Phys Med Biol; 2015 Dec; 60(23):9079-94. PubMed ID: 26562661 [TBL] [Abstract][Full Text] [Related]
4. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery. Fan CH; Liu HL; Ting CY; Lee YH; Huang CY; Ma YJ; Wei KC; Yen TC; Yeh CK PLoS One; 2014; 9(5):e96327. PubMed ID: 24788566 [TBL] [Abstract][Full Text] [Related]
5. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening. Sierra C; Acosta C; Chen C; Wu SY; Karakatsani ME; Bernal M; Konofagou EE J Cereb Blood Flow Metab; 2017 Apr; 37(4):1236-1250. PubMed ID: 27278929 [TBL] [Abstract][Full Text] [Related]
6. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo. Choi JJ; Wang S; Tung YS; Morrison B; Konofagou EE Ultrasound Med Biol; 2010 Jan; 36(1):58-67. PubMed ID: 19900750 [TBL] [Abstract][Full Text] [Related]
7. The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. Chen H; Konofagou EE J Cereb Blood Flow Metab; 2014 Jul; 34(7):1197-204. PubMed ID: 24780905 [TBL] [Abstract][Full Text] [Related]
8. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. Ji R; Karakatsani ME; Burgess M; Smith M; Murillo MF; Konofagou EE J Control Release; 2021 Sep; 337():458-471. PubMed ID: 34324895 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of drug delivery enhanced by acoustic pressure during blood-brain barrier disruption induced by focused ultrasound. Yang FY; Lee PY Int J Nanomedicine; 2012; 7():2573-82. PubMed ID: 22679368 [TBL] [Abstract][Full Text] [Related]
10. Blood-brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Chien CY; Xu L; Pacia CP; Yue Y; Chen H Sci Rep; 2022 Sep; 12(1):16147. PubMed ID: 36167747 [TBL] [Abstract][Full Text] [Related]
11. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study. Aryal M; Vykhodtseva N; Zhang YZ; McDannold N J Control Release; 2015 Apr; 204():60-9. PubMed ID: 25724272 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI. Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166 [TBL] [Abstract][Full Text] [Related]
13. PEGylated PLGA-based phase shift nanodroplets combined with focused ultrasound for blood brain barrier opening in rats. Zhang X; Hu J; Zhao G; Huang N; Tan Y; Pi L; Huang Q; Wang F; Wang Z; Wang Z; Cheng Y Oncotarget; 2017 Jun; 8(24):38927-38936. PubMed ID: 28473660 [TBL] [Abstract][Full Text] [Related]
14. Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. Samiotaki G; Konofagou EE IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2257-65. PubMed ID: 24158283 [TBL] [Abstract][Full Text] [Related]
15. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery. Chen H; Chen CC; Acosta C; Wu SY; Sun T; Konofagou EE PLoS One; 2014; 9(10):e108880. PubMed ID: 25279463 [TBL] [Abstract][Full Text] [Related]
16. Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo. Choi JJ; Feshitan JA; Baseri B; Wang S; Tung YS; Borden MA; Konofagou EE IEEE Trans Biomed Eng; 2010 Jan; 57(1):145-54. PubMed ID: 19846365 [TBL] [Abstract][Full Text] [Related]
17. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. Ye D; Zhang X; Yue Y; Raliya R; Biswas P; Taylor S; Tai YC; Rubin JB; Liu Y; Chen H J Control Release; 2018 Sep; 286():145-153. PubMed ID: 30009893 [TBL] [Abstract][Full Text] [Related]
18. Cavitation-facilitated transmembrane permeability enhancement induced by acoustically vaporized nanodroplets. Song R; Zhang C; Teng F; Tu J; Guo X; Fan Z; Zheng Y; Zhang D Ultrason Sonochem; 2021 Nov; 79():105790. PubMed ID: 34662804 [TBL] [Abstract][Full Text] [Related]
19. Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study. Baseri B; Choi JJ; Tung YS; Konofagou EE Ultrasound Med Biol; 2010 Sep; 36(9):1445-59. PubMed ID: 20800172 [TBL] [Abstract][Full Text] [Related]
20. Characterization of passive permeability after low intensity focused ultrasound mediated blood-brain barrier disruption in a preclinical model. Arsiwala TA; Sprowls SA; Blethen KE; Fladeland RA; Wolford CP; Kielkowski BN; Glass MJ; Wang P; Wilson O; Carpenter JS; Ranjan M; Finomore V; Rezai A; Lockman PR Fluids Barriers CNS; 2022 Sep; 19(1):72. PubMed ID: 36076213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]