BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24096272)

  • 1. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.
    Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF
    Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.
    Martinez-Boubeta C; Simeonidis K; Makridis A; Angelakeris M; Iglesias O; Guardia P; Cabot A; Yedra L; Estradé S; Peiró F; Saghi Z; Midgley PA; Conde-Leborán I; Serantes D; Baldomir D
    Sci Rep; 2013; 3():1652. PubMed ID: 23576006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy.
    Saville SL; Qi B; Baker J; Stone R; Camley RE; Livesey KL; Ye L; Crawford TM; Mefford OT
    J Colloid Interface Sci; 2014 Jun; 424():141-51. PubMed ID: 24767510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.
    Munoz-Menendez C; Conde-Leboran I; Baldomir D; Chubykalo-Fesenko O; Serantes D
    Phys Chem Chem Phys; 2015 Nov; 17(41):27812-20. PubMed ID: 26437746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.
    Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia.
    Ortega-Julia J; Ortega D; Leliaert J
    Nanoscale; 2023 Jun; 15(24):10342-10350. PubMed ID: 37288522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.
    Rácz J; de Châtel PF; Szabó IA; Szunyogh L; Nándori I
    Phys Rev E; 2016 Jan; 93(1):012607. PubMed ID: 26871122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
    Tay ZW; Chandrasekharan P; Chiu-Lam A; Hensley DW; Dhavalikar R; Zhou XY; Yu EY; Goodwill PW; Zheng B; Rinaldi C; Conolly SM
    ACS Nano; 2018 Apr; 12(4):3699-3713. PubMed ID: 29570277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.