BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24096658)

  • 1. Improvement of reticuline productivity from dopamine by using engineered Escherichia coli.
    Kim JS; Nakagawa A; Yamazaki Y; Matsumura E; Koyanagi T; Minami H; Katayama T; Sato F; Kumagai H
    Biosci Biotechnol Biochem; 2013; 77(10):2166-8. PubMed ID: 24096658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method.
    Matsumura E; Nakagawa A; Tomabechi Y; Koyanagi T; Kumagai H; Yamamoto K; Katayama T; Sato F; Minami H
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):396-402. PubMed ID: 27740901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli.
    Guo D; Kong S; Sun Y; Li X; Pan H
    Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of novel sulphated alkaloids for drug discovery.
    Matsumura E; Nakagawa A; Tomabechi Y; Ikushiro S; Sakaki T; Katayama T; Yamamoto K; Kumagai H; Sato F; Minami H
    Sci Rep; 2018 May; 8(1):7980. PubMed ID: 29789647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Factories for the Production of Benzylisoquinoline Alkaloids.
    Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ
    Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis.
    Takenaka M; Kamasaka K; Daryong K; Tsuchikane K; Miyazawa S; Fujihana S; Hori Y; Vavricka CJ; Hosoyama A; Kawasaki H; Shirai T; Araki M; Nakagawa A; Minami H; Kondo A; Hasunuma T
    Microb Cell Fact; 2024 Jun; 23(1):178. PubMed ID: 38879464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial platform for fermentative production of plant alkaloids.
    Nakagawa A; Minami H; Kim JS; Koyanagi T; Katayama T; Sato F; Kumagai H
    Nat Commun; 2011; 2():326. PubMed ID: 21610729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform.
    Nakagawa A; Minami H; Kim JS; Koyanagi T; Katayama T; Sato F; Kumagai H
    Bioeng Bugs; 2012 Jan; 3(1):49-53. PubMed ID: 22179145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentative production of plant benzylisoquinoline alkaloids in microbes.
    Minami H
    Biosci Biotechnol Biochem; 2013; 77(8):1617-22. PubMed ID: 23924710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial production of plant benzylisoquinoline alkaloids.
    Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of the optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli.
    Nakagawa A; Nakamura S; Matsumura E; Yashima Y; Takao M; Aburatani S; Yaoi K; Katayama T; Minami H
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5433-5447. PubMed ID: 34181032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
    DeLoache WC; Russ ZN; Narcross L; Gonzales AM; Martin VJ; Dueber JE
    Nat Chem Biol; 2015 Jul; 11(7):465-71. PubMed ID: 25984720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli.
    Nakagawa A; Matsuzaki C; Matsumura E; Koyanagi T; Katayama T; Yamamoto K; Sato F; Kumagai H; Minami H
    Sci Rep; 2014 Oct; 4():6695. PubMed ID: 25331563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli.
    Nakagawa A; Matsumura E; Koyanagi T; Katayama T; Kawano N; Yoshimatsu K; Yamamoto K; Kumagai H; Sato F; Minami H
    Nat Commun; 2016 Feb; 7():10390. PubMed ID: 26847395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of D-lactate productivity in recombinant Escherichia coli by coupling production with growth.
    Zhou L; Tian KM; Niu DD; Shen W; Shi GY; Singh S; Wang ZX
    Biotechnol Lett; 2012 Jun; 34(6):1123-30. PubMed ID: 22367280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of fumaric acid by fermentation.
    Straathof AJ; van Gulik WM
    Subcell Biochem; 2012; 64():225-40. PubMed ID: 23080253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering for acetate control in large scale fermentation.
    Tao Y; Cheng Q; Kopatsis AD
    Methods Mol Biol; 2012; 834():283-303. PubMed ID: 22144366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.