BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24096686)

  • 1. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes.
    Hylton NP; Li XF; Giannini V; Lee KH; Ekins-Daukes NJ; Loo J; Vercruysse D; Van Dorpe P; Sodabanlu H; Sugiyama M; Maier SA
    Sci Rep; 2013 Oct; 3():2874. PubMed ID: 24096686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells.
    Tanabe K
    Nanoscale Res Lett; 2016 Dec; 11(1):236. PubMed ID: 27142874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.
    Uhrenfeldt C; Villesen TF; Têtu A; Johansen B; Larsen AN
    Opt Express; 2015 Jun; 23(11):A525-38. PubMed ID: 26072877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA; Karar AA; Mustafa E; Nur O
    Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
    Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R
    Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping.
    Zhu SQ; Bian B; Zhu YF; Yang J; Zhang D; Feng L
    Front Chem; 2019; 7():137. PubMed ID: 30941345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.
    Shen T; Tan Q; Dai Z; Padture NP; Pacifici D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.
    Sun C; Qin C; Zhai H; Zhang B; Wu X
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.
    Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Dependent Localized Surface Plasma Resonance of Au Nanoparticles in Au/ZnO Photoanodes for Dye-Sensitized Solar Cells.
    Chang WC; Wan-Chin Y; Lin LY; Yu YJ; Peng YM
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2431-437. PubMed ID: 29648742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells.
    Chen SC; Chen YJ; Chen WT; Yen YT; Kao TS; Chuang TY; Liao YK; Wu KH; Yabushita A; Hsieh TP; Charlton MD; Tsai DP; Kuo HC; Chueh YL
    ACS Nano; 2014 Sep; 8(9):9341-8. PubMed ID: 25093682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.
    Disney CER; Pillai S; Green MA
    Sci Rep; 2017 Oct; 7(1):12826. PubMed ID: 28993645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Improvement of Triplet-Triplet Annihilation-Based Upconversion Solid Films through Plasmon-Induced Backward Scattering of Periodic Arrays of Ag and Al.
    Sugawa K; Yoshinari S; Watanabe S; Ishida K; Jin S; Takeshima N; Fukasawa T; Fukushima M; Katoh R; Takase K; Tahara H; Otsuki J
    Langmuir; 2021 Oct; 37(39):11508-11519. PubMed ID: 34542293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.