These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 24096906)
1. Involvement of Botrytis cinerea small GTPases BcRAS1 and BcRAC in differentiation, virulence, and the cell cycle. Minz Dub A; Kokkelink L; Tudzynski B; Tudzynski P; Sharon A Eukaryot Cell; 2013 Dec; 12(12):1609-18. PubMed ID: 24096906 [TBL] [Abstract][Full Text] [Related]
2. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Minz-Dub A; Sharon A Mol Microbiol; 2017 May; 104(3):487-498. PubMed ID: 28164413 [TBL] [Abstract][Full Text] [Related]
3. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Kokkelink L; Minz A; Al-Masri M; Giesbert S; Barakat R; Sharon A; Tudzynski P Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848 [TBL] [Abstract][Full Text] [Related]
4. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
5. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related]
6. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. González-Rodríguez VE; Garrido C; Cantoral JM; Schumacher J Fungal Biol; 2016 Oct; 120(10):1225-35. PubMed ID: 27647239 [TBL] [Abstract][Full Text] [Related]
7. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
8. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
9. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of BcBem1 and its interaction partners in Botrytis cinerea: impact on differentiation and virulence. Giesbert S; Siegmund U; Schumacher J; Kokkelink L; Tudzynski P PLoS One; 2014; 9(5):e95172. PubMed ID: 24797931 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Viefhues A; Schlathoelter I; Simon A; Viaud M; Tudzynski P Eukaryot Cell; 2015 Jul; 14(7):636-51. PubMed ID: 25934690 [TBL] [Abstract][Full Text] [Related]
12. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Yan L; Yang Q; Sundin GW; Li H; Ma Z Fungal Genet Biol; 2010 Sep; 47(9):753-60. PubMed ID: 20595070 [TBL] [Abstract][Full Text] [Related]
13. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Morcx S; Kunz C; Choquer M; Assie S; Blondet E; Simond-Côte E; Gajek K; Chapeland-Leclerc F; Expert D; Soulie MC Fungal Genet Biol; 2013 Mar; 52():1-8. PubMed ID: 23268147 [TBL] [Abstract][Full Text] [Related]
14. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
15. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. Harren K; Schumacher J; Tudzynski B PLoS One; 2012; 7(7):e41761. PubMed ID: 22844520 [TBL] [Abstract][Full Text] [Related]
16. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Yang Q; Yan L; Gu Q; Ma Z Appl Microbiol Biotechnol; 2012 Oct; 96(2):481-92. PubMed ID: 22526788 [TBL] [Abstract][Full Text] [Related]
17. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139 [TBL] [Abstract][Full Text] [Related]
18. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea. Marschall R; Tudzynski P Mol Microbiol; 2016 Jul; 101(2):281-98. PubMed ID: 27062300 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment. Castillo L; Plaza V; Larrondo LF; Canessa P Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927 [TBL] [Abstract][Full Text] [Related]
20. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]