These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24097042)

  • 1. Origin and effect of phototransduction noise in primate cone photoreceptors.
    Angueyra JM; Rieke F
    Nat Neurosci; 2013 Nov; 16(11):1692-700. PubMed ID: 24097042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics.
    Schneeweis DM; Schnapf JL
    J Neurosci; 1999 Feb; 19(4):1203-16. PubMed ID: 9952398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
    Vinberg F; Peshenko IV; Chen J; Dizhoor AM; Kefalov VJ
    J Biol Chem; 2018 May; 293(19):7457-7465. PubMed ID: 29549122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
    Holcman D; Korenbrot JI
    J Gen Physiol; 2005 Jun; 125(6):641-60. PubMed ID: 15928405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and functional impact of dark noise in retinal cones.
    Rieke F; Baylor DA
    Neuron; 2000 Apr; 26(1):181-6. PubMed ID: 10798402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes.
    Luo DG; Silverman D; Frederiksen R; Adhikari R; Cao LH; Oatis JE; Kono M; Cornwall MC; Yau KW
    Curr Biol; 2020 Dec; 30(24):4921-4931.e5. PubMed ID: 33065015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreceptor degeneration in a pure-cone retina. Effects of cyclic nucleotides, and inhibitors of phosphodiesterase and protein synthesis.
    Williams DS; Colley NJ; Farber DB
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1059-69. PubMed ID: 2439472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors.
    Vinberg F; Chen J; Kefalov VJ
    Prog Retin Eye Res; 2018 Nov; 67():87-101. PubMed ID: 29883715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones.
    Baudin J; Angueyra JM; Sinha R; Rieke F
    Elife; 2019 Jan; 8():. PubMed ID: 30672735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In intact mammalian photoreceptors, Ca2+-dependent modulation of cGMP-gated ion channels is detectable in cones but not in rods.
    Rebrik TI; Korenbrot JI
    J Gen Physiol; 2004 Jan; 123(1):63-75. PubMed ID: 14699078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different effects of low Ca2+ on signal transmission from rods and cones to bipolar cells in carp retina.
    Xu HP; Yang XL
    Brain Res; 2002 Dec; 957(1):136-43. PubMed ID: 12443989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors.
    Picones A; Korenbrot JI
    Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rod and cone contrast gains derived from reaction time distribution modeling.
    Cao D; Pokorny J
    J Vis; 2010 Feb; 10(2):11.1-15. PubMed ID: 20462312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.