These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 24097054)

  • 41. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
    Kim DS; Heo J; Ahn SH; Han SW; Yun WS; Kim ZH
    Nano Lett; 2009 Oct; 9(10):3619-25. PubMed ID: 19624147
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures.
    Gonçalves MR; Melikyan A; Minassian H; Makaryan T; Marti O
    Opt Express; 2014 Oct; 22(20):24516-29. PubMed ID: 25322027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectroscopic mode mapping of resonant plasmon nanoantennas.
    Ghenuche P; Cherukulappurath S; Taminiau TH; van Hulst NF; Quidant R
    Phys Rev Lett; 2008 Sep; 101(11):116805. PubMed ID: 18851312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires.
    Jones AC; Olmon RL; Skrabalak SE; Wiley BJ; Xia YN; Raschke MB
    Nano Lett; 2009 Jul; 9(7):2553-8. PubMed ID: 19499897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled plasmon resonance properties of hollow gold nanosphere aggregates.
    Chandra M; Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2010 Nov; 132(44):15782-9. PubMed ID: 20961113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.
    Lu G; Liu J; Zhang T; Shen H; Perriat P; Martini M; Tillement O; Gu Y; He Y; Wang Y; Gong Q
    Nanoscale; 2013 Jul; 5(14):6545-51. PubMed ID: 23760562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-space mapping of mid-infrared near-field of Yagi-Uda antenna in the emission mode.
    Xiang Y; Amarie S; Cai W; Luo W; Wu W; Ren M; Zhang X; Xu J
    Opt Express; 2019 Feb; 27(4):5884-5892. PubMed ID: 30876183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers.
    Romero I; Aizpurua J; Bryant GW; García De Abajo FJ
    Opt Express; 2006 Oct; 14(21):9988-99. PubMed ID: 19529393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon response evaluation based on image-derived arbitrary nanostructures.
    Trautmann S; Richard-Lacroix M; Dathe A; Schneidewind H; Dellith J; Fritzsche W; Deckert V
    Nanoscale; 2018 May; 10(21):9830-9839. PubMed ID: 29774907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.
    Kilic VT; Erturk VB; Demir HV
    Opt Lett; 2012 Jan; 37(2):139-41. PubMed ID: 22854446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct imaging of nanogap-mode plasmon-resonant fields.
    Tanaka Y; Ishiguro H; Fujiwara H; Yokota Y; Ueno K; Misawa H; Sasaki K
    Opt Express; 2011 Apr; 19(8):7726-33. PubMed ID: 21503082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical near-field excitations on plasmonic nanoparticle-based structures.
    Foteinopoulou S; Vigneron JP; Vandenbem C
    Opt Express; 2007 Apr; 15(7):4253-67. PubMed ID: 19532670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere-nanowire joined system.
    Kim S; Imura K; Lee M; Narushima T; Okamoto H; Jeong DH
    Phys Chem Chem Phys; 2013 Mar; 15(12):4146-53. PubMed ID: 23165283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS; Kwon MH; Kim J
    Microsc Res Tech; 2004 Aug; 64(5-6):453-8. PubMed ID: 15549697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
    Singh A; Calbris G; van Hulst NF
    Nano Lett; 2014 Aug; 14(8):4715-23. PubMed ID: 25019603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A platform for time-resolved scanning Kerr microscopy in the near-field.
    Keatley PS; Loughran THJ; Hendry E; Barnes WL; Hicken RJ; Childress JR; Katine JA
    Rev Sci Instrum; 2017 Dec; 88(12):123708. PubMed ID: 29289235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.