These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24097313)

  • 1. Cellular nanotechnology: making biological interfaces smarter.
    Mendes PM
    Chem Soc Rev; 2013 Dec; 42(24):9207-18. PubMed ID: 24097313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotopography: cellular responses to nanostructured materials.
    Kriparamanan R; Aswath P; Zhou A; Tang L; Nguyen KT
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1905-19. PubMed ID: 17025103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential for the use of nanofeaturing in medical devices.
    Curtis A
    Expert Rev Med Devices; 2005 May; 2(3):293-301. PubMed ID: 16288593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale surfacing for regenerative medicine.
    Yang Y; Leong KW
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):478-95. PubMed ID: 20803682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured injectable cell microcarriers for tissue regeneration.
    Zhang Z; Eyster TW; Ma PX
    Nanomedicine (Lond); 2016 Jun; 11(12):1611-28. PubMed ID: 27230960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering.
    Nisbet DR; Forsythe JS; Shen W; Finkelstein DI; Horne MK
    J Biomater Appl; 2009 Jul; 24(1):7-29. PubMed ID: 19074469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges.
    Variola F; Vetrone F; Richert L; Jedrzejowski P; Yi JH; Zalzal S; Clair S; Sarkissian A; Perepichka DF; Wuest JD; Rosei F; Nanci A
    Small; 2009 May; 5(9):996-1006. PubMed ID: 19360718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties.
    Tawfick S; De Volder M; Copic D; Park SJ; Oliver CR; Polsen ES; Roberts MJ; Hart AJ
    Adv Mater; 2012 Apr; 24(13):1628-74. PubMed ID: 22396318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured bladder tissue replacements.
    Chun YW; Lim H; Webster TJ; Haberstroh KM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(2):134-145. PubMed ID: 20730887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.
    Arora P; Sindhu A; Dilbaghi N; Chaudhury A; Rajakumar G; Rahuman AA
    J Cell Mol Med; 2012 Sep; 16(9):1991-2000. PubMed ID: 22260258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of nanostructured materials on biointerfacial interactions.
    Koegler P; Clayton A; Thissen H; Santos GN; Kingshott P
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1820-39. PubMed ID: 22705547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.
    Santo VE; Gomes ME; Mano JF; Reis RL
    Nanomedicine (Lond); 2012 Jul; 7(7):1045-66. PubMed ID: 22846091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silkworm silk-based materials and devices generated using bio-nanotechnology.
    Huang W; Ling S; Li C; Omenetto FG; Kaplan DL
    Chem Soc Rev; 2018 Aug; 47(17):6486-6504. PubMed ID: 29938722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials for bone tissue regeneration: updates and future perspectives.
    J Hill M; Qi B; Bayaniahangar R; Araban V; Bakhtiary Z; Doschak MR; Goh BC; Shokouhimehr M; Vali H; Presley JF; Zadpoor AA; Harris MB; Abadi PP; Mahmoudi M
    Nanomedicine (Lond); 2019 Nov; 14(22):2987-3006. PubMed ID: 31779522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinventing micro-and nanomoulding.
    Whiteside B; Manser P
    Med Device Technol; 2007; 18(2):18-20, 22. PubMed ID: 17494497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface and bulk characterisation of electrospun membranes: problems and improvements.
    Nisbet DR; Rodda AE; Finkelstein DI; Horne MK; Forsythe JS; Shen W
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):1-12. PubMed ID: 19304462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications.
    Rodriguez-Velazquez E; Alatorre-Meda M; Mano JF
    Curr Pharm Des; 2015; 21(33):4837-50. PubMed ID: 26290209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.