BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24097858)

  • 1. Test-firing ammunition for spliceosome inhibition in cancer.
    Dehm SM
    Clin Cancer Res; 2013 Nov; 19(22):6064-6. PubMed ID: 24097858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region.
    Folco EG; Coil KE; Reed R
    Genes Dev; 2011 Mar; 25(5):440-4. PubMed ID: 21363962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors.
    Eskens FA; Ramos FJ; Burger H; O'Brien JP; Piera A; de Jonge MJ; Mizui Y; Wiemer EA; Carreras MJ; Baselga J; Tabernero J
    Clin Cancer Res; 2013 Nov; 19(22):6296-304. PubMed ID: 23983259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action.
    Finci LI; Zhang X; Huang X; Zhou Q; Tsai J; Teng T; Agrawal A; Chan B; Irwin S; Karr C; Cook A; Zhu P; Reynolds D; Smith PG; Fekkes P; Buonamici S; Larsen NA
    Genes Dev; 2018 Feb; 32(3-4):309-320. PubMed ID: 29491137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms.
    Brierley CK; Steensma DP
    Curr Hematol Malig Rep; 2016 Dec; 11(6):408-415. PubMed ID: 27492253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total Syntheses of Pladienolide-Derived Spliceosome Modulators.
    Sim J; Jang E; Kim HJ; Jeon H
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective total synthesis of pladienolide B: a potent spliceosome inhibitor.
    Ghosh AK; Anderson DD
    Org Lett; 2012 Sep; 14(18):4730-3. PubMed ID: 22954141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B.
    Kashyap MK; Kumar D; Villa R; La Clair JJ; Benner C; Sasik R; Jones H; Ghia EM; Rassenti LZ; Kipps TJ; Burkart MD; Castro JE
    Haematologica; 2015 Jul; 100(7):945-54. PubMed ID: 25862704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors.
    Larsen NA
    Subcell Biochem; 2021; 96():409-432. PubMed ID: 33252738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation.
    Roybal GA; Jurica MS
    Nucleic Acids Res; 2010 Oct; 38(19):6664-72. PubMed ID: 20529876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expedient Total Syntheses of Pladienolide-Derived Spliceosome Modulators.
    Rhoades D; Rheingold AL; O'Malley BW; Wang J
    J Am Chem Soc; 2021 Apr; 143(13):4915-4920. PubMed ID: 33755462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles.
    Beusch I; Rao B; Studer MK; Luhovska T; Šukytė V; Lei S; Oses-Prieto J; SeGraves E; Burlingame A; Jonas S; Madhani HD
    Mol Cell; 2023 Jul; 83(14):2578-2594.e9. PubMed ID: 37402368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators.
    Aird D; Teng T; Huang CL; Pazolli E; Banka D; Cheung-Ong K; Eifert C; Furman C; Wu ZJ; Seiler M; Buonamici S; Fekkes P; Karr C; Palacino J; Park E; Smith PG; Yu L; Mizui Y; Warmuth M; Chicas A; Corson L; Zhu P
    Nat Commun; 2019 Jan; 10(1):137. PubMed ID: 30635584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological validation that SF3b is a target of the antitumor macrolide pladienolide.
    Yokoi A; Kotake Y; Takahashi K; Kadowaki T; Matsumoto Y; Minoshima Y; Sugi NH; Sagane K; Hamaguchi M; Iwata M; Mizui Y
    FEBS J; 2011 Dec; 278(24):4870-80. PubMed ID: 21981285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splicing factor SF3b as a target of the antitumor natural product pladienolide.
    Kotake Y; Sagane K; Owa T; Mimori-Kiyosue Y; Shimizu H; Uesugi M; Ishihama Y; Iwata M; Mizui Y
    Nat Chem Biol; 2007 Sep; 3(9):570-5. PubMed ID: 17643112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9.
    Brosi R; Gröning K; Behrens SE; Lührmann R; Krämer A
    Science; 1993 Oct; 262(5130):102-5. PubMed ID: 8211112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of Hsh155/SF3b1 interactions with the U2 snRNA/branch site duplex.
    Carrocci TJ; Paulson JC; Hoskins AA
    RNA; 2018 Aug; 24(8):1028-1040. PubMed ID: 29752352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High antitumor activity of pladienolide B and its derivative in gastric cancer.
    Sato M; Muguruma N; Nakagawa T; Okamoto K; Kimura T; Kitamura S; Yano H; Sannomiya K; Goji T; Miyamoto H; Okahisa T; Mikasa H; Wada S; Iwata M; Takayama T
    Cancer Sci; 2014 Jan; 105(1):110-6. PubMed ID: 24635824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs.
    Effenberger KA; Anderson DD; Bray WM; Prichard BE; Ma N; Adams MS; Ghosh AK; Jurica MS
    J Biol Chem; 2014 Jan; 289(4):1938-47. PubMed ID: 24302718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A.
    Corrionero A; Miñana B; Valcárcel J
    Genes Dev; 2011 Mar; 25(5):445-59. PubMed ID: 21363963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.