These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24098068)

  • 1. Exploring control parameters of two photon processes in solutions.
    Goswami D; Nag A
    J Chem Sci (Bangalore); 2012 Jan; 124(1):281-289. PubMed ID: 24098068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensitive Technique for Two-Photon Absorption Measurements: Towards Higher Resolution Microscopy.
    Nag A; Kr De A; Goswami D
    J Phys Conf Ser; 2007; 80(Suppl 2):. PubMed ID: 24137175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective two-photon absorption cross section of heteroaromatic quadrupolar dyes: dependence on measurement technique and laser pulse characteristics.
    Signorini R; Ferrante C; Pedron D; Zerbetto M; Cecchetto E; Slaviero M; Fortunati I; Collini E; Bozio R; Abbotto A; Beverina L; Pagani GA
    J Phys Chem A; 2008 May; 112(18):4224-34. PubMed ID: 18380494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses.
    Chiang WY; Okuhata T; Usman A; Tamai N; Masuhara H
    J Phys Chem B; 2014 Dec; 118(49):14010-6. PubMed ID: 24926894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond pulse train shaping improves two-photon excited fluorescence measurements.
    Park JK; Fischer MC; Susumu K; Therien MJ; Warren WS
    Opt Lett; 2014 Oct; 39(19):5606-9. PubMed ID: 25360939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicontrast nonlinear optical microscopy with a compact and rapid pulse shaper.
    Li B; Claytor KE; Yuan H; Vo-Dinh T; Warren WS; Fischer MC
    Opt Lett; 2012 Jul; 37(13):2763-5. PubMed ID: 22743521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intense femtosecond optical pulse shaping approaches to spatiotemporal control.
    Goswami D
    Front Chem; 2022; 10():1006637. PubMed ID: 36712993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores.
    He GS; Lin TC; Dai J; Prasad PN; Kannan R; Dombroskie AG; Vaia RA; Tan LS
    J Chem Phys; 2004 Mar; 120(11):5275-84. PubMed ID: 15267399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing.
    Rodriguez L; Chiesa M
    Appl Opt; 2011 Jul; 50(19):3240-5. PubMed ID: 21743524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High energy (>40 nJ), sub-100 fs, 950 nm laser for two-photon microscopy.
    Dai R; Zhang N; Meng Y; Zhou Z; Wang F
    Opt Express; 2021 Nov; 29(24):38979-38988. PubMed ID: 34809270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Photon Absorption in Fluorescent Protein Chromophores: TDDFT and CC2 Results.
    Salem MA; Brown A
    J Chem Theory Comput; 2014 Aug; 10(8):3260-9. PubMed ID: 26588295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of broadband and ultrabroadband pulses at MHz and GHz pulse-repetition rates for nonlinear femtosecond-laser scanning microscopy.
    Studier H; Breunig HG; König K
    J Biophotonics; 2011 Jan; 4(1-2):84-91. PubMed ID: 20222101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Absorption of Metal-Assisted Chromophores.
    Li X; Rinkevicius Z; Ågren H
    J Chem Theory Comput; 2014 Dec; 10(12):5630-9. PubMed ID: 26583246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Two-Photon Active Chromophores Based on Tetrathienoacene (TTA) and Dithienothiophene (DTT).
    Kumaresan P; Liu YY; Vegiraju S; Ezhumalai Y; Yu HC; Yau SL; Chen MC; Lin TC
    Chem Asian J; 2015 Aug; 10(8):1640-6. PubMed ID: 25930006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliminating thermal effects in z-scan measurements of thin PTCDA films.
    Wickremasinghe N; Wang X; Schmitzer H; Wagner HP
    Opt Express; 2014 Oct; 22(20):23955-64. PubMed ID: 25321972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigating thermal mechanical damage potential during two-photon dermal imaging.
    Masters BR; So PT; Buehler C; Barry N; Sutin JD; Mantulin WW; Gratton E
    J Biomed Opt; 2004; 9(6):1265-70. PubMed ID: 15568947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.
    Li C; Yang K; Feng Y; Su X; Yang J; Jin X; Shui M; Wang Y; Zhang X; Song Y; Xu H
    J Phys Chem B; 2009 Dec; 113(48):15730-3. PubMed ID: 19894682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the Protein Environment on Two-Photon Absorption Cross-Sections of the GFP Chromophore Anion Resolved at the XMCQDPT2 Level of Theory.
    Aslopovsky VR; Scherbinin AV; Kleshchina NN; Bochenkova AV
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511026
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Marazzi M; García-Iriepa C; Benitez-Martin C; Najera F; Monari A; Sampedro D
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer.
    Rodriguez L; Ahn HY; Belfield KD
    Opt Express; 2009 Oct; 17(22):19617-28. PubMed ID: 19997182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.