These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24098095)

  • 1. Thermal adaptation of conformational dynamics in ribonuclease H.
    Stafford KA; Robustelli P; Palmer AG
    PLoS Comput Biol; 2013; 9(10):e1003218. PubMed ID: 24098095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
    Stafford KA; Trbovic N; Butterwick JA; Abel R; Friesner RA; Palmer AG
    J Mol Biol; 2015 Feb; 427(4):853-866. PubMed ID: 25550198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
    Butterwick JA; Palmer AG
    Protein Sci; 2006 Dec; 15(12):2697-707. PubMed ID: 17088323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostability of Enzymes from Molecular Dynamics Simulations.
    Zeiske T; Stafford KA; Palmer AG
    J Chem Theory Comput; 2016 Jun; 12(6):2489-92. PubMed ID: 27123810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the Relationship between Conformational Dynamics and Enzymatic Activity in Ribonuclease HI Homologues.
    Martin JA; Robustelli P; Palmer AG
    Biochemistry; 2020 Sep; 59(35):3201-3205. PubMed ID: 32813972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, purification, and characterization of a recombinant ribonuclease H from Thermus thermophilus HB8.
    Kanaya S; Itaya M
    J Biol Chem; 1992 May; 267(14):10184-92. PubMed ID: 1315754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative molecular dynamics study of thermophilic and mesophilic ribonuclease HI enzymes.
    Tang L; Liu H
    J Biomol Struct Dyn; 2007 Feb; 24(4):379-92. PubMed ID: 17206853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
    Butterwick JA; Loria JP; Astrof NS; Kroenke CD; Cole R; Rance M; Palmer AG
    J Mol Biol; 2004 Jun; 339(4):855-71. PubMed ID: 15165855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues.
    Ratcliff K; Corn J; Marqusee S
    Biochemistry; 2009 Jun; 48(25):5890-8. PubMed ID: 19408959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis.
    Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S
    Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side chain dynamics of carboxyl and carbonyl groups in the catalytic function of Escherichia coli ribonuclease H.
    Stafford KA; Ferrage F; Cho JH; Palmer AG
    J Am Chem Soc; 2013 Dec; 135(48):18024-7. PubMed ID: 24219366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally Relevant Specific Packing Can Determine Protein Folding Routes.
    Yadahalli S; Gosavi S
    J Mol Biol; 2016 Jan; 428(2 Pt B):509-21. PubMed ID: 26724535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, thermodynamic, and mutational analyses of a psychrotrophic RNase HI.
    Tadokoro T; You DJ; Abe Y; Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Jun; 46(25):7460-8. PubMed ID: 17536836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy.
    Oda Y; Iwai S; Ohtsuka E; Ishikawa M; Ikehara M; Nakamura H
    Nucleic Acids Res; 1993 Oct; 21(20):4690-5. PubMed ID: 7694232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles.
    Childers MC; Daggett V
    J Phys Chem B; 2018 Jul; 122(26):6673-6689. PubMed ID: 29864281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity.
    Jongruja N; You DJ; Kanaya E; Koga Y; Takano K; Kanaya S
    FEBS J; 2010 Nov; 277(21):4474-89. PubMed ID: 20875084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex.
    Ohtani N; Tomita M; Itaya M
    Biochem J; 2008 Jun; 412(3):517-26. PubMed ID: 18318663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization and functional complementation of ribonuclease HII and ribonuclease HIII from Chlamydophila pneumoniae AR39.
    Liang R; Liu X; Pei D; Liu J
    Microbiology (Reading); 2007 Mar; 153(Pt 3):787-793. PubMed ID: 17322199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of folding cores to the thermostabilities of two ribonucleases H.
    Robic S; Berger JM; Marqusee S
    Protein Sci; 2002 Feb; 11(2):381-9. PubMed ID: 11790848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.