These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 24098154)

  • 1. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.
    Xu B; Lee KK; Zhang L; Gerton JL
    PLoS Genet; 2013; 9(10):e1003857. PubMed ID: 24098154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome.
    Xu B; Gogol M; Gaudenz K; Gerton JL
    BMC Genomics; 2016 Jan; 17():25. PubMed ID: 26729373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
    Mönnich M; Kuriger Z; Print CG; Horsfield JA
    PLoS One; 2011; 6(5):e20051. PubMed ID: 21637801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage.
    Mfarej MG; Skibbens RV
    PLoS Genet; 2020 Dec; 16(12):e1009219. PubMed ID: 33382686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells.
    Bose T; Lee KK; Lu S; Xu B; Harris B; Slaughter B; Unruh J; Garrett A; McDowell W; Box A; Li H; Peak A; Ramachandran S; Seidel C; Gerton JL
    PLoS Genet; 2012; 8(6):e1002749. PubMed ID: 22719263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.
    Xu B; Sowa N; Cardenas ME; Gerton JL
    Hum Mol Genet; 2015 Mar; 24(6):1540-55. PubMed ID: 25378554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cohesion promotes nucleolar structure and function.
    Harris B; Bose T; Lee KK; Wang F; Lu S; Ross RT; Zhang Y; French SL; Beyer AL; Slaughter BD; Unruh JR; Gerton JL
    Mol Biol Cell; 2014 Feb; 25(3):337-46. PubMed ID: 24307683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational mechanisms at work in the cohesinopathies.
    Gerton JL
    Nucleus; 2012; 3(6):520-5. PubMed ID: 23138777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome.
    Percival SM; Thomas HR; Amsterdam A; Carroll AJ; Lees JA; Yost HJ; Parant JM
    Dis Model Mech; 2015 Aug; 8(8):941-55. PubMed ID: 26044958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2.
    Faramarz A; Balk JA; van Schie JJM; Oostra AB; Ghandour CA; Rooimans MA; Wolthuis RMF; de Lange J
    PLoS One; 2020; 15(1):e0220348. PubMed ID: 31935221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions.
    Whelan G; Kreidl E; Peters JM; Eichele G
    Nucleus; 2012 Jul; 3(4):330-4. PubMed ID: 22614755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically induced redox stress occurs in a yeast model for Roberts syndrome.
    Mfarej MG; Skibbens RV
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34897432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Etiology and pathogenesis of the cohesinopathies.
    Zakari M; Yuen K; Gerton JL
    Wiley Interdiscip Rev Dev Biol; 2015; 4(5):489-504. PubMed ID: 25847322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption.
    Strasser AS; Gonzalez-Reiche AS; Zhou X; Valdebenito-Maturana B; Ye X; Zhang B; Wu M; van Bakel H; Jabs EW
    Nat Commun; 2024 Aug; 15(1):7154. PubMed ID: 39168984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Roberts Syndrome Individual With Differential Genotoxin Sensitivity and a DNA Damage Response Defect.
    McKay MJ; Craig J; Kalitsis P; Kozlov S; Verschoor S; Chen P; Lobachevsky P; Vasireddy R; Yan Y; Ryan J; McGillivray G; Savarirayan R; Lavin MF; Ramsay RG; Xu H
    Int J Radiat Oncol Biol Phys; 2019 Apr; 103(5):1194-1202. PubMed ID: 30508616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes).
    Morita A; Nakahira K; Hasegawa T; Uchida K; Taniguchi Y; Takeda S; Toyoda A; Sakaki Y; Shimada A; Takeda H; Yanagihara I
    Dev Growth Differ; 2012 Jun; 54(5):588-604. PubMed ID: 22694322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohesinopathies of a feather flock together.
    Skibbens RV; Colquhoun JM; Green MJ; Molnar CA; Sin DN; Sullivan BJ; Tanzosh EE
    PLoS Genet; 2013; 9(12):e1004036. PubMed ID: 24367282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esco2 and cohesin regulate CRL4 ubiquitin ligase
    Sanchez AC; Thren ED; Iovine MK; Skibbens RV
    Cell Cycle; 2022 Mar; 21(5):501-513. PubMed ID: 34989322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Frameshift Mutation in ESCO2 Gene in Roberts Syndrome.
    Mengen E; Kotan LD; Ucakturk SA; Topaloglu AK; Yuksel B
    J Coll Physicians Surg Pak; 2018 May; 28(5):403-405. PubMed ID: 29690975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity.
    Gordillo M; Vega H; Trainer AH; Hou F; Sakai N; Luque R; Kayserili H; Basaran S; Skovby F; Hennekam RC; Uzielli ML; Schnur RE; Manouvrier S; Chang S; Blair E; Hurst JA; Forzano F; Meins M; Simola KO; Raas-Rothschild A; Schultz RA; McDaniel LD; Ozono K; Inui K; Zou H; Jabs EW
    Hum Mol Genet; 2008 Jul; 17(14):2172-80. PubMed ID: 18411254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.