These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24098274)

  • 1. The use of dendrograms to describe the electrical activity of motoneurons underlying behaviors in leeches.
    Juárez-Hernández LJ; Bisson G; Torre V
    Front Integr Neurosci; 2013; 7():69. PubMed ID: 24098274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed motor pattern underlying whole-body shortening in the medicinal leech.
    Arisi I; Zoccolan D; Torre V
    J Neurophysiol; 2001 Nov; 86(5):2475-88. PubMed ID: 11698536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a nonspiking neuron on motor patterns of the leech.
    Rodriguez MJ; Alvarez RJ; Szczupak L
    J Neurophysiol; 2012 Apr; 107(7):1917-24. PubMed ID: 22236711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel pathways coordinate crawling in the medicinal leech, Hirudo medicinalis.
    Baader AP; Kristan WB
    J Comp Physiol A; 1995 Jun; 176(6):715-26. PubMed ID: 7776267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coactivation of motoneurons regulated by a network combining electrical and chemical synapses.
    Rela L; Szczupak L
    J Neurosci; 2003 Jan; 23(2):682-92. PubMed ID: 12533628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal correlation between neuronal tail ganglion activity and locomotion in the leech, Hirudo medicinalis.
    Baader AP; Bächtold D
    Invert Neurosci; 1997 Mar; 2(4):245-51. PubMed ID: 9460234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral hierarchy in the medicinal leech, Hirudo medicinalis: feeding as a dominant behavior.
    Misell LM; Shaw BK; Kristan WB
    Behav Brain Res; 1998 Jan; 90(1):13-21. PubMed ID: 9520210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinematic study of crawling behavior in the leech, Hirudo medicinalis.
    Stern-Tomlinson W; Nusbaum MP; Perez LE; Kristan WB
    J Comp Physiol A; 1986 Apr; 158(4):593-603. PubMed ID: 3723440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and modeling of leech crawling: evidence for an oscillatory behavior produced by propagating waves of excitation.
    Cacciatore TW; Rozenshteyn R; Kristan WB
    J Neurosci; 2000 Feb; 20(4):1643-55. PubMed ID: 10662854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly variable spike trains underlie reproducible sensorimotor responses in the medicinal leech.
    Zoccolan D; Pinato G; Torre V
    J Neurosci; 2002 Dec; 22(24):10790-800. PubMed ID: 12486172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons.
    Crisp KM; Gallagher BR; Mesce KA
    J Exp Biol; 2012 Sep; 215(Pt 17):3028-36. PubMed ID: 22660774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spontaneous electrical activity of neurons in leech ganglia.
    Moshtagh-Khorasani M; Miller EW; Torre V
    Physiol Rep; 2013 Oct; 1(5):e00089. PubMed ID: 24303164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discontinuous locomotion and prey sensing in the leech.
    Harley CM; Rossi M; Cienfuegos J; Wagenaar D
    J Exp Biol; 2013 May; 216(Pt 10):1890-7. PubMed ID: 23785108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A classic model animal in the 21st century: recent lessons from the leech nervous system.
    Wagenaar DA
    J Exp Biol; 2015 Nov; 218(Pt 21):3353-9. PubMed ID: 26538172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steps in the development of chemical and electrical synapses by pairs of identified leech neurons in culture.
    Liu Y; Nicholls J
    Proc R Soc Lond B Biol Sci; 1989 Apr; 236(1284):253-68. PubMed ID: 2567005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal mechanisms for the control of body orientation in clione II. Modifications in the activity of postural control system.
    Deliagina TG; Orlovsky GN; Selverston AI; Arshavsky YI
    J Neurophysiol; 2000 Jan; 83(1):367-73. PubMed ID: 10634880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of motoneuron intrinsic properties to fictive motor pattern generation.
    Wright TM; Calabrese RL
    J Neurophysiol; 2011 Aug; 106(2):538-53. PubMed ID: 21562194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity of leech motoneurons during motor patterns is regulated by intrinsic properties and synaptic inputs.
    Bernardo Perez-Etchegoyen C; Alvarez RJ; Rodriguez MJ; Szczupak L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Mar; 198(3):239-51. PubMed ID: 22179332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming.
    Guzulaitis R; Hounsgaard J; Alaburda A
    J Neurosci; 2016 May; 36(21):5799-807. PubMed ID: 27225769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional interneurons in behavioral circuits of the medicinal leech.
    Kristan WB; Wittenberg G; Nusbaum MP; Stern-Tomlinson W
    Experientia; 1988 May; 44(5):383-9. PubMed ID: 3286283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.