These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24098591)
1. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. Biddle AS; Black SJ; Blanchard JL PLoS One; 2013; 8(10):e77599. PubMed ID: 24098591 [TBL] [Abstract][Full Text] [Related]
2. Faecal parameters as biomarkers of the equine hindgut microbial ecosystem under dietary change. Grimm P; Philippeau C; Julliand V Animal; 2017 Jul; 11(7):1136-1145. PubMed ID: 28065211 [TBL] [Abstract][Full Text] [Related]
3. Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. Medina B; Girard ID; Jacotot E; Julliand V J Anim Sci; 2002 Oct; 80(10):2600-9. PubMed ID: 12413082 [TBL] [Abstract][Full Text] [Related]
4. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657 [TBL] [Abstract][Full Text] [Related]
5. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Brossard L; Martin C; Chaucheyras-Durand F; Michalet-Doreau B Reprod Nutr Dev; 2004; 44(3):195-206. PubMed ID: 15460159 [TBL] [Abstract][Full Text] [Related]
6. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs. Metzler-Zebeli BU; Canibe N; Montagne L; Freire J; Bosi P; Prates JAM; Tanghe S; Trevisi P Animal; 2019 Jan; 13(1):64-73. PubMed ID: 29745350 [TBL] [Abstract][Full Text] [Related]
7. Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4. Metzler-Zebeli BU; Schmitz-Esser S; Mann E; Grüll D; Molnar T; Zebeli Q Appl Environ Microbiol; 2015 Dec; 81(24):8489-99. PubMed ID: 26431973 [TBL] [Abstract][Full Text] [Related]
8. Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Wang Y; Leong LEX; Keating RL; Kanno T; Abell GCJ; Mobegi FM; Choo JM; Wesselingh SL; Mason AJ; Burr LD; Rogers GB Gut Microbes; 2019; 10(3):367-381. PubMed ID: 30359203 [TBL] [Abstract][Full Text] [Related]
9. Dietary composition and yeast/microalgae combination supplementation modulate the microbial ecosystem in the caecum, colon and faeces of horses. Grimm P; Combes S; Pascal G; Cauquil L; Julliand V Br J Nutr; 2020 Feb; 123(4):372-382. PubMed ID: 31690358 [TBL] [Abstract][Full Text] [Related]
10. Changes of the hindgut microbiota due to high-starch diet can be associated with behavioral stress response in horses. Destrez A; Grimm P; Cézilly F; Julliand V Physiol Behav; 2015 Oct; 149():159-64. PubMed ID: 26048306 [TBL] [Abstract][Full Text] [Related]
11. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. Sato T; Matsumoto K; Okumura T; Yokoi W; Naito E; Yoshida Y; Nomoto K; Ito M; Sawada H FEMS Microbiol Ecol; 2008 Dec; 66(3):528-36. PubMed ID: 18554304 [TBL] [Abstract][Full Text] [Related]
12. Rates of production and utilization of lactate by microbial communities from the human colon. Belenguer A; Holtrop G; Duncan SH; Anderson SE; Calder AG; Flint HJ; Lobley GE FEMS Microbiol Ecol; 2011 Jul; 77(1):107-19. PubMed ID: 21395623 [TBL] [Abstract][Full Text] [Related]
14. Changes in Microbiota in Rumen Digesta and Feces Due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Plaizier JC; Li S; Danscher AM; Derakshani H; Andersen PH; Khafipour E Microb Ecol; 2017 Aug; 74(2):485-495. PubMed ID: 28175972 [TBL] [Abstract][Full Text] [Related]
15. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570 [TBL] [Abstract][Full Text] [Related]
16. Thermophile-fermented feed modulates the gut microbiota related to lactate metabolism in pigs. Yoshikawa S; Itaya K; Hoshina R; Tashiro Y; Suda W; Cho Y; Matsuura M; Shindo C; Ito T; Hattori M; Miyamoto H; Kodama H J Appl Microbiol; 2024 Oct; 135(10):. PubMed ID: 39333026 [TBL] [Abstract][Full Text] [Related]
17. Impact of barley form on equine total tract fibre digestibility and colonic microbiota. Philippeau C; Sadet-Bourgeteau S; Varloud M; Julliand V Animal; 2015 Dec; 9(12):1943-8. PubMed ID: 26316024 [TBL] [Abstract][Full Text] [Related]
18. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Duncan SH; Louis P; Flint HJ Appl Environ Microbiol; 2004 Oct; 70(10):5810-7. PubMed ID: 15466518 [TBL] [Abstract][Full Text] [Related]
19. The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study. Adamberg K; Kolk K; Jaagura M; Vilu R; Adamberg S Benef Microbes; 2018 Jan; 9(1):21-34. PubMed ID: 29022389 [TBL] [Abstract][Full Text] [Related]
20. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse. Moreau MM; Eades SC; Reinemeyer CR; Fugaro MN; Onishi JC Vet Microbiol; 2014 Jan; 168(2-4):436-41. PubMed ID: 24355533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]