These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24098651)

  • 1. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.
    Yan Z; Wang J
    PLoS One; 2013; 8(9):e74443. PubMed ID: 24098651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPA-LN: a scoring function of ligand-nucleic acid interactions via optimizing both specificity and affinity.
    Yan Z; Wang J
    Nucleic Acids Res; 2017 Jul; 45(12):e110. PubMed ID: 28431169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity and affinity quantification of protein-protein interactions.
    Yan Z; Guo L; Hu L; Wang J
    Bioinformatics; 2013 May; 29(9):1127-33. PubMed ID: 23476023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect.
    Yan Z; Wang J
    Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ITScore-NL: An Iterative Knowledge-Based Scoring Function for Nucleic Acid-Ligand Interactions.
    Feng Y; Huang SY
    J Chem Inf Model; 2020 Dec; 60(12):6698-6708. PubMed ID: 33291885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks.
    Yan Z; Wang J
    J Comput Aided Mol Des; 2016 Mar; 30(3):219-27. PubMed ID: 26879323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity quantification of biomolecular recognition and its implication for drug discovery.
    Yan Z; Wang J
    Sci Rep; 2012; 2():309. PubMed ID: 22413060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HISNAPI: a bioinformatic tool for dynamic hot spot analysis in nucleic acid-protein interface with a case study.
    Mei LC; Wang YL; Wu FX; Wang F; Hao GF; Yang GF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33406224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possibilities of the method of step-by-step complication of ligand structure in studies of protein--nucleic acid interactions: mechanisms of functioning of some replication, repair, topoisomerization, and restriction enzymes.
    Bugreev DV; Nevinsky GA
    Biochemistry (Mosc); 1999 Mar; 64(3):237-49. PubMed ID: 10205294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NLDock: a Fast Nucleic Acid-Ligand Docking Algorithm for Modeling RNA/DNA-Ligand Complexes.
    Feng Y; Zhang K; Wu Q; Huang SY
    J Chem Inf Model; 2021 Sep; 61(9):4771-4782. PubMed ID: 34468128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking and scoring for nucleic acid-ligand interactions: Principles and current status.
    Feng Y; Yan Y; He J; Tao H; Wu Q; Huang SY
    Drug Discov Today; 2022 Mar; 27(3):838-847. PubMed ID: 34718205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond.
    Jia P; Zhang F; Wu C; Li M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38739759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics of biomolecular recognition and conformational dynamics.
    Chu WT; Yan Z; Chu X; Zheng X; Liu Z; Xu L; Zhang K; Wang J
    Rep Prog Phys; 2021 Dec; 84(12):. PubMed ID: 34753115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic database for protein-nucleic acid interactions (ProNIT).
    Prabakaran P; An J; Gromiha MM; Selvaraj S; Uedaira H; Kono H; Sarai A
    Bioinformatics; 2001 Nov; 17(11):1027-34. PubMed ID: 11724731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Web tools support predicting protein-nucleic acid complexes stability with affinity changes.
    Zhang X; Mei LC; Gao YY; Hao GF; Song BA
    Wiley Interdiscip Rev RNA; 2023; 14(5):e1781. PubMed ID: 36693636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of intrinsic disorder in protein-nucleic acid interactions.
    Dyson HJ
    Mol Biosyst; 2012 Jan; 8(1):97-104. PubMed ID: 21874205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two sides of the coin: affinity and specificity of nucleic acid interactions.
    Demidov VV; Frank-Kamenetskii MD
    Trends Biochem Sci; 2004 Feb; 29(2):62-71. PubMed ID: 15102432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gel-Based Analysis of Protein-Nucleic Acid Interactions.
    Stowell JAW; Tang TTL; Seidel M; Passmore LA
    Methods Mol Biol; 2021; 2263():321-339. PubMed ID: 33877605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.
    Vickers TA; Crooke ST
    PLoS One; 2016; 11(8):e0161930. PubMed ID: 27571227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.