BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24098666)

  • 1. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.
    Zhou ZS; Rasmann S; Li M; Guo JY; Chen HS; Wan FH
    PLoS One; 2013; 8(9):e74760. PubMed ID: 24098666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae).
    Zhou ZS; Guo JY; Chen HS; Wan FH
    Environ Entomol; 2010 Jun; 39(3):1021-7. PubMed ID: 20550818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding on rapid cold hardening
    Tian Z; Ma C; Zhang Y; Chen H; Gao X; Guo J; Zhou Z
    Front Plant Sci; 2023; 14():1114026. PubMed ID: 37528981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heritability and Evolutionary Potential Drive Cold Hardiness in the Overwintering
    Zhao C; Ma F; Chen H; Wan F; Guo J; Zhou Z
    Front Physiol; 2018; 9():666. PubMed ID: 29922172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silencing the Myosin Regulatory Light Chain Gene
    Tian Z; Zhang Y; Ma C; Chen H; Guo J; Zhou Z
    Insects; 2020 Nov; 11(12):. PubMed ID: 33260791
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of short-term high-temperature exposure on the life history parameters of Ophraella communa.
    Chen H; Zheng X; Luo M; Guo J; Solangi GS; Wan F; Zhou Z
    Sci Rep; 2018 Sep; 8(1):13969. PubMed ID: 30228344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of photoperiod on developmental fitness in Ophraella communa (Coleoptera: Chrysomelidae).
    Zhou ZS; Luo M; Guo JY; Chen HS; Wan FH
    Environ Entomol; 2014 Oct; 43(5):1435-42. PubMed ID: 25203359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contemporary evolution of host plant range expansion in an introduced herbivorous beetle Ophraella communa.
    Fukano Y; Doi H; Thomas CE; Takata M; Koyama S; Satoh T
    J Evol Biol; 2016 Apr; 29(4):757-65. PubMed ID: 26728888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Current and Future Co-Occurrence of
    Iannella M; De Simone W; D'Alessandro P; Console G; Biondi M
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31540033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Fluctuating Thermal Regimes on Life History Parameters and Body Size of
    Zhao C; Chen H; Guo J; Zhou Z
    Insects; 2022 Sep; 13(9):. PubMed ID: 36135522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory co-receptor is involved in host recognition and oviposition in Ophraella communa (Coleoptera: Chrysomelidae).
    Ma C; Cui S; Bai Q; Tian Z; Zhang Y; Chen G; Gao X; Tian Z; Chen H; Guo J; Wan F; Zhou Z
    Insect Mol Biol; 2020 Aug; 29(4):381-390. PubMed ID: 32291884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-Plant Selection Behavior of
    Jin J; Zhao M; Zhou Z; Wang R; Guo J; Wan F
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depressed Supercooling Point and Increased Glycerol Concentration in Overwintering Adult Tiger Beetles (Cicindelida).
    Burns M; Herrera D; Brosius T; Muir TJ
    Cryo Letters; 2020; 41(4):216-222. PubMed ID: 33988650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold hardiness of Asian longhorned beetle (Coleoptera: Cerambycidae) larvae in different populations.
    Feng Y; Xu L; Tian B; Tao J; Wang J; Zong S
    Environ Entomol; 2014 Oct; 43(5):1419-26. PubMed ID: 25202887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant Responses of Ragweed Leaf Beetle
    Chen H; Solangi GS; Guo J; Wan F; Zhou Z
    Front Physiol; 2018; 9():808. PubMed ID: 30034344
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicting impact of a biocontrol agent: integrating distribution modeling with climate-dependent vital rates.
    Augustinus B; Sun Y; Beuchat C; Schaffner U; Müller-Schärer H
    Ecol Appl; 2020 Jan; 30(1):e02003. PubMed ID: 31519029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold tolerance and supercooling points of two ladybird beetles (Col.: Coccinellidae): Impact of the diet.
    Pourani MS; Mahdian K; Izadi H; Basirat M; Sahhafi SR
    Cryobiology; 2019 Dec; 91():61-68. PubMed ID: 31669223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold Tolerance of the Tribolium castaneum (Coleoptera: Tenebrionidae), Under Different Thermal Regimes: Impact of Cold Acclimation.
    Izadi H; Mohammadzadeh M; Mehrabian M
    J Econ Entomol; 2019 Aug; 112(4):1983-1988. PubMed ID: 31083719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological Metabolic Responses of
    Chen H; Solangi GS; Zhao C; Yang L; Guo J; Wan F; Zhou Z
    Front Physiol; 2019; 10():1053. PubMed ID: 31507435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae).
    Mohammadzadeh M; Izadi H
    J Therm Biol; 2018 Jan; 71():24-31. PubMed ID: 29301697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.