These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 240987)
1. Helix-coil stability constants for the naturally occurring amino acids in water. IX. Glutamic acid parameters from random poly(hydroxybutylglutamine-co-L-glutamic acid). Maxfield FR; Alter JE; Taylor GT; Scheraga HA Macromolecules; 1975; 8(4):479-91. PubMed ID: 240987 [TBL] [Abstract][Full Text] [Related]
2. Helix-coil stability constants for the naturally occurring amino acids in water. 16. Aspartic acid parameters from random poly(hydroxybutylglutamine-co-L-aspartic acid). Kobayashi Y; Cardinaux F; Zweifel BO; Scheraga HA Macromolecules; 1977; 10(6):1271-83. PubMed ID: 926822 [TBL] [Abstract][Full Text] [Related]
3. Helix-coil stability constants for the naturally occurring amino acids in water. 11. Lysine parameters from random poly(hydroxybutylglutamine-co-L-lysine). Dygert MK; Taylor GT; Cardinaux F; Scheraga HA Macromolecules; 1976; 9(5):794-801. PubMed ID: 10477 [TBL] [Abstract][Full Text] [Related]
4. Helix-coil stability constants for the naturally occurring amino acids in water. 15 Arginine parameters from random poly(hydroxybutylglutamine-co-L-arginine). Konishi Y; van Nispen JW; Davenport G; Scheraga HA Macromolecules; 1977; 10(6):1264-71. PubMed ID: 926821 [TBL] [Abstract][Full Text] [Related]
5. Helix--coil stability constants for the naturally occurring amino acids in water. X. Tyrosine parameters from random poly(hydroxypropylglutamine-co-L-tyrosine). Scheule RK; Cardinaux F; Taylor GT; Scheraga HA Macromolecules; 1976; 9(1):23-33. PubMed ID: 1249989 [TBL] [Abstract][Full Text] [Related]
6. Helix-coil stability constants for the naturally occurring amino acids in water. XXIII. Proline parameters from random poly (hydroxybutylglutamine-co-L-proline). Altmann KH; Wójcik J; Vásquez M; Scheraga HA Biopolymers; 1990; 30(1-2):107-20. PubMed ID: 2224046 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic parameters of helix-random coil transitions in polypeptide chains. IV. Random copolymers of L-alanine with L-glutamic acid. Bychkova VE; Ptitsyn OB Mol Biol (Mosk); 1976; 10(4):756-61. PubMed ID: 15214 [TBL] [Abstract][Full Text] [Related]
8. Degradation of N5-(2-hydroxyethyl)-L-glutamine and L-glutamic acid homopolymers and copolymers by papain. Pytela J; Kotva R; Metalová M; Rypácek F Int J Biol Macromol; 1990 Aug; 12(4):241-6. PubMed ID: 1982924 [TBL] [Abstract][Full Text] [Related]
9. Thermal and charge-induced coil to -helix transition of poly-L-glutamic acid and random L-glutamic acid-L-alanine copolymers. Warashina A; Ikegami A Biopolymers; 1972 Mar; 11(3):529-47. PubMed ID: 5016115 [No Abstract] [Full Text] [Related]
10. Polymer concentration dependence of the helix to random coil transition of a charged polypeptide in aqueous salt solution. Nitta K; Yoneyama M Biophys Chem; 1975 Oct; 3(4):323-9. PubMed ID: 96 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic parameters of the helix-coil transition in polypeptide chains. III. Random copolymers of L-leucine and L-glutamic acid. Bychkova VE; Gudkov AT; Miller WG; Mitin YV; Ptitsyn OB; Shpungin IL Biopolymers; 1975 Aug; 14(8):1739-53. PubMed ID: 239773 [No Abstract] [Full Text] [Related]
12. Helix-coil stability constants for the naturally occurring amino acids in water. VII. Phenylalanine parameters from random poly(hydroxypropylglutamine-co-L-phenylalanine). Van Wart HE; Taylor GT; Scheraga HA Macromolecules; 1973; 6(2):266-73. PubMed ID: 4778413 [No Abstract] [Full Text] [Related]
13. Helix-coil stability constants for the naturally occurring amino acids in water. XII. Asparagine parameters from random poly(hydroxybutylglutamine-co-L-asparagine). Matheson RR; Nemenoff RA; Cardinaux F; Scheraga HA Biopolymers; 1977 Jul; 16(7):1567-85. PubMed ID: 880372 [No Abstract] [Full Text] [Related]
14. Helix-coil stability constants for the naturally occurring amino acids in water. XIV. Methionine parameters from random poly(hydroxypropylglutamine, L-methionine). Hill DJ; Cardinaux F; Scheraga HA Biopolymers; 1977 Nov; 16(11):2447-67. PubMed ID: 912009 [No Abstract] [Full Text] [Related]
15. Free energy determinants of secondary structure formation: I. alpha-Helices. Yang AS; Honig B J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056 [TBL] [Abstract][Full Text] [Related]
16. Solution properties of synthetic polypeptides. 18. Helix-coil transition of poly-N5-(2-hydroxyethyl)L-glutamine. Miyake M; Akita S; Teramoto A; Norisuye T; Fumita H Biopolymers; 1974 Jun; 13(6):1173-86. PubMed ID: 4854319 [No Abstract] [Full Text] [Related]
18. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Marqusee S; Baldwin RL Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8898-902. PubMed ID: 3122208 [TBL] [Abstract][Full Text] [Related]
19. The stability of the helical conformation of random L-glutamic acid--2-nitrobenzyl-L-glutamate copolymers in aqueous solution. Estevez J; Loucheux-Lefebvre MH FEBS Lett; 1976 Nov; 72(1):157-60. PubMed ID: 992082 [No Abstract] [Full Text] [Related]
20. Helix-coil transition of Poly(L-glutamic acid) in N-methylacetamide. Harry JB; Franzen JS Biopolymers; 1969; 8(4):433-48. PubMed ID: 5358943 [No Abstract] [Full Text] [Related] [Next] [New Search]