These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24098788)

  • 1. 2mit, an intronic gene of Drosophila melanogaster timeless2, is involved in behavioral plasticity.
    Baggio F; Bozzato A; Benna C; Leonardi E; Romoli O; Cognolato M; Tosatto SC; Costa R; Sandrelli F
    PLoS One; 2013; 8(9):e76351. PubMed ID: 24098788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine kinase interacts with 2MIT and is involved in Drosophila melanogaster short-term memory.
    Bozzato A; Romoli O; Polo D; Baggio F; Mazzotta GM; Triolo G; Myers MP; Sandrelli F
    J Insect Physiol; 2020; 127():104118. PubMed ID: 33011181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila timeless2 is required for chromosome stability and circadian photoreception.
    Benna C; Bonaccorsi S; Wülbeck C; Helfrich-Förster C; Gatti M; Kyriacou CP; Costa R; Sandrelli F
    Curr Biol; 2010 Feb; 20(4):346-52. PubMed ID: 20153199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.
    Ho MC; Johnsen H; Goetz SE; Schiller BJ; Bae E; Tran DA; Shur AS; Allen JM; Rau C; Bender W; Fisher WW; Celniker SE; Drewell RA
    PLoS Genet; 2009 Nov; 5(11):e1000709. PubMed ID: 19893611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for commissureless2 function during dipteran insect nerve cord development.
    Sarro J; Andrews E; Sun L; Behura SK; Tan JC; Zeng E; Severson DW; Duman-Scheel M
    Dev Dyn; 2013 Dec; 242(12):1466-77. PubMed ID: 24026811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and function of intron sequences of the wingless gene during the evolution of the Drosophila genus.
    Costas J; Pereira PS; Vieira CP; Pinho S; Vieira J; Casares F
    Evol Dev; 2004; 6(5):325-35. PubMed ID: 15330865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.
    Lunetti P; Cappello AR; Marsano RM; Pierri CL; Carrisi C; Martello E; Caggese C; Dolce V; Capobianco L
    Biochim Biophys Acta; 2013 Oct; 1827(10):1245-55. PubMed ID: 23850633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster.
    Eriksen KK; Hauser F; Schiøtt M; Pedersen KM; Søndergaard L; Grimmelikhuijzen CJ
    Genome Res; 2000 Jul; 10(7):924-38. PubMed ID: 10899142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the evolution of Yeti, a Drosophila melanogaster heterochromatin gene.
    Moschetti R; Celauro E; Cruciani F; Caizzi R; Dimitri P
    PLoS One; 2014; 9(11):e113010. PubMed ID: 25405891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti.
    Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G
    BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the sugar receptors in insects.
    Kent LB; Robertson HM
    BMC Evol Biol; 2009 Feb; 9():41. PubMed ID: 19226470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein polymorphism is negatively correlated with conservation of intronic sequences and complexity of expression patterns in Drosophila melanogaster.
    Petit N; Casillas S; Ruiz A; Barbadilla A
    J Mol Evol; 2007 May; 64(5):511-8. PubMed ID: 17460807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of one intron loss and phylogenetic evolution of Dfak gene in the Drosophila melanogaster species group.
    Jin S; Hu GA; Qian YH; Zhang L; Zhang J; Qiu G; Zeng QT; Gui JF
    Genetica; 2005 Nov; 125(2-3):223-30. PubMed ID: 16247694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intron retention in the Drosophila melanogaster Rieske Iron Sulphur Protein gene generated a new protein.
    Gontijo AM; Miguela V; Whiting MF; Woodruff RC; Dominguez M
    Nat Commun; 2011; 2():. PubMed ID: 21610726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of a novel patched-related protein in Apis mellifera and Drosophila melanogaster.
    Pastenes L; Ibáñez F; Bolatto C; Pavéz L; Cambiazo V
    Arch Insect Biochem Physiol; 2008 Jul; 68(3):156-70. PubMed ID: 18563713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.
    Hodar C; Zuñiga A; Pulgar R; Travisany D; Chacon C; Pino M; Maass A; Cambiazo V
    Gene; 2014 Feb; 535(2):210-7. PubMed ID: 24321690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural variation in the Drosophila melanogaster clock gene period modulates splicing of its 3'-terminal intron and mid-day siesta.
    Low KH; Chen WF; Yildirim E; Edery I
    PLoS One; 2012; 7(11):e49536. PubMed ID: 23152918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic and genomewide analyses suggest a functional relationship between kayak, the Drosophila fos homolog, and fig, a predicted protein phosphatase 2c nested within a kayak intron.
    Hudson SG; Garrett MJ; Carlson JW; Micklem G; Celniker SE; Goldstein ES; Newfeld SJ
    Genetics; 2007 Nov; 177(3):1349-61. PubMed ID: 18039871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conserved Drosophila ananassae timeless gene functions as a clock component in Drosophila melanogaster.
    Nishinokubi I; Shimoda M; Kako K; Sakai T; Fukamizu A; Ishida N
    Gene; 2003 Mar; 307():183-90. PubMed ID: 12706901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2.
    Qian J; Tu R; Yuan L; Xie W
    Exp Cell Res; 2016 Jun; 344(2):183-93. PubMed ID: 26844630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.