These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24098857)

  • 1. Analysis of recycled poly (styrene-co-butadiene) sulfonation: a new approach in solid catalysts for biodiesel production.
    Aguilar-Garnica E; Paredes-Casillas M; Herrera-Larrasilla TE; Rodríguez-Palomera F; Ramírez-Arreola DE
    Springerplus; 2013; 2():475. PubMed ID: 24098857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodiesel Synthesis from High Free-Fatty-Acid Chicken Fat using a Scrap-Tire Derived Solid Acid Catalyst and KOH.
    Maafa IM
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction.
    da Luz Corrêa AP; Bastos RRC; da Rocha Filho GN; Zamian JR; da Conceição LRV
    RSC Adv; 2020 May; 10(34):20245-20256. PubMed ID: 35520450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Pot Synthesis of Biodiesel using Efficient Sulfonated-Derived Tea Waste-Heterogeneous Catalyst.
    Rashid U; Ahmad J; Ibrahim ML; Nisar J; Hanif MA; Shean TYC
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31323732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of solid acid catalysts from waste biomass and their application for microwave-assisted biodiesel production from waste palm oil.
    Thushari I; Babel S
    Waste Manag Res; 2018 Aug; 36(8):719-728. PubMed ID: 30058978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production.
    Wong WY; Lim S; Pang YL; Shuit SH; Chen WH; Lee KT
    Sci Total Environ; 2020 Jul; 727():138534. PubMed ID: 32334218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.
    Wang L; Dong X; Jiang H; Li G; Zhang M
    Bioresour Technol; 2014 Apr; 158():392-5. PubMed ID: 24661813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.
    Díaz L; Borges ME
    J Agric Food Chem; 2012 Aug; 60(32):7928-33. PubMed ID: 22799882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation.
    Quah RV; Tan YH; Mubarak NM; Kansedo J; Khalid M; Abdullah EC; Abdullah MO
    Waste Manag; 2020 Dec; 118():626-636. PubMed ID: 33011540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in nano-catalysts based biodiesel production from non-food feedstocks.
    Gardy J; Rehan M; Hassanpour A; Lai X; Nizami AS
    J Environ Manage; 2019 Nov; 249():109316. PubMed ID: 31472308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst.
    Tran TT; Kaiprommarat S; Kongparakul S; Reubroycharoen P; Guan G; Nguyen MH; Samart C
    Waste Manag; 2016 Jun; 52():367-74. PubMed ID: 27053375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils.
    Na S; Minhua Z; Xiuqin D; Lingtao W
    RSC Adv; 2019 May; 9(28):15941-15948. PubMed ID: 35521382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production.
    Thushari I; Babel S
    Bioresour Technol; 2018 Jan; 248(Pt A):199-203. PubMed ID: 28676209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.
    Hirayama D; Saron C
    Waste Manag Res; 2015 Jun; 33(6):543-9. PubMed ID: 26022280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of microporous lignin-derived carbon-based solid catalysts used in biodiesel production.
    Ma Z; Xing X; Qu Z; Sun Y; Sun G; Wang X; Han Y
    Int J Biol Macromol; 2020 Dec; 164():1840-1846. PubMed ID: 32758614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid acid catalysts produced by sulfonation of petroleum coke: Dominant role of aromatic hydrogen.
    Xiao Y; Hill JM
    Chemosphere; 2020 Jun; 248():125981. PubMed ID: 32000040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies.
    Sahani S; Roy T; Sharma YC
    Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step.
    Prabhavathi Devi BL; Vijai Kumar Reddy T; Vijaya Lakshmi K; Prasad RB
    Bioresour Technol; 2014 Feb; 153():370-3. PubMed ID: 24373712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.
    Ramesh V; Biswal M; Mohanty S; Nayak SK
    Waste Manag Res; 2014 May; 32(5):379-88. PubMed ID: 24695435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.