These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Photodynamic inactivation of multiresistant bacteria (KPC) using zinc(II)phthalocyanines. Miretti M; Clementi R; Tempesti TC; Baumgartner MT Bioorg Med Chem Lett; 2017 Sep; 27(18):4341-4344. PubMed ID: 28844390 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and in vitro photodynamic activities of di-alpha-substituted zinc(ii) phthalocyanine derivatives. Liu JY; Lo PC; Jiang XJ; Fong WP; Ng DK Dalton Trans; 2009 Jun; (21):4129-35. PubMed ID: 19452061 [TBL] [Abstract][Full Text] [Related]
24. Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine. Spesia MB; Durantini EN J Photochem Photobiol B; 2013 Aug; 125():179-87. PubMed ID: 23838424 [TBL] [Abstract][Full Text] [Related]
25. Photodynamic modification of disulfonated aluminium phthalocyanine fluorescence in a macrophage cell line. Kunz L; Connelly JP; Woodhams JH; MacRobert AJ Photochem Photobiol Sci; 2007 Sep; 6(9):940-8. PubMed ID: 17721592 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Scalise I; Durantini EN Bioorg Med Chem; 2005 Apr; 13(8):3037-45. PubMed ID: 15781413 [TBL] [Abstract][Full Text] [Related]
27. Tetra-trifluoroethoxyl zinc phthalocyanine: potential photosensitizer for use in the photodynamic therapy of cancer. Gao L; Qian X; Zhang L; Zhang Y J Photochem Photobiol B; 2001 Dec; 65(1):35-8. PubMed ID: 11748003 [TBL] [Abstract][Full Text] [Related]
28. Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles. Kandoth N; Kirejev V; Monti S; Gref R; Ericson MB; Sortino S Biomacromolecules; 2014 May; 15(5):1768-76. PubMed ID: 24673610 [TBL] [Abstract][Full Text] [Related]
29. The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. Uslan C; Köksoy B; Durmuş M; Durmuş İşleyen N; Öztürk Y; Çakar ZP; Hepuzer Gürsel Y; Sesalan BS J Biol Inorg Chem; 2019 Mar; 24(2):191-210. PubMed ID: 30673878 [TBL] [Abstract][Full Text] [Related]
31. A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(II) phthalocyanine and small molecule target-based anticancer drug erlotinib. Zhang FL; Huang Q; Zheng K; Li J; Liu JY; Xue JP Chem Commun (Camb); 2013 Oct; 49(83):9570-2. PubMed ID: 24018863 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and comparative photodynamic properties of two isosteric alkyl substituted zinc(II) phthalocyanines. Gauna GA; Marino J; García Vior MC; Roguin LP; Awruch J Eur J Med Chem; 2011 Nov; 46(11):5532-9. PubMed ID: 21955680 [TBL] [Abstract][Full Text] [Related]
33. Low Ag-doped titanium dioxide nanosheet films with outstanding antimicrobial property. Zhang Q; Sun C; Zhao Y; Zhou S; Hu X; Chen P Environ Sci Technol; 2010 Nov; 44(21):8270-5. PubMed ID: 20879735 [TBL] [Abstract][Full Text] [Related]
34. Visible light-induced biocidal activities and mechanistic study of neutral porphyrin derivatives against S. aureus and E. coli. Wang J; Yang X; Song H; Liao W; Zhuo L; Wang G; Wei H; Yang Y; Luo S; Zhou Z J Photochem Photobiol B; 2018 Aug; 185():199-205. PubMed ID: 29957499 [TBL] [Abstract][Full Text] [Related]
35. Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent. Bayat F; Karimi AR Int J Biol Macromol; 2019 May; 129():927-935. PubMed ID: 30772416 [TBL] [Abstract][Full Text] [Related]
36. Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. Aroso RT; Calvete MJF; Pucelik B; Dubin G; Arnaut LG; Pereira MM; Dąbrowski JM Eur J Med Chem; 2019 Dec; 184():111740. PubMed ID: 31605864 [TBL] [Abstract][Full Text] [Related]
37. Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Soncin M; Fabris C; Busetti A; Dei D; Nistri D; Roncucci G; Jori G Photochem Photobiol Sci; 2002 Oct; 1(10):815-9. PubMed ID: 12656484 [TBL] [Abstract][Full Text] [Related]
38. A disulfide-linked conjugate of ferrocenyl chalcone and silicon(IV) phthalocyanine as an activatable photosensitiser. Lau JT; Jiang XJ; Ng DK; Lo PC Chem Commun (Camb); 2013 May; 49(39):4274-6. PubMed ID: 23135340 [TBL] [Abstract][Full Text] [Related]
39. Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Spesia MB; Caminos DA; Pons P; Durantini EN Photodiagnosis Photodyn Ther; 2009 Mar; 6(1):52-61. PubMed ID: 19447372 [TBL] [Abstract][Full Text] [Related]
40. Photophysical properties of a new water soluble tetra thiamine substituted zinc phthalocyanine conjugated to gold nanorods of different aspect ratios. Mthethwa T; Antunes E; Nyokong T Dalton Trans; 2014 Jun; 43(22):8230-40. PubMed ID: 24671409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]