These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24099005)

  • 1. Untangling structure-function relationships in the rhomboid family of intramembrane proteases.
    Brooks CL; Lemieux MJ
    Biochim Biophys Acta; 2013 Dec; 1828(12):2862-72. PubMed ID: 24099005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.
    Zoll S; Stanchev S; Began J; Skerle J; Lepšík M; Peclinovská L; Majer P; Strisovsky K
    EMBO J; 2014 Oct; 33(20):2408-21. PubMed ID: 25216680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.
    Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y
    Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a rhomboid family intramembrane protease.
    Wang Y; Zhang Y; Ha Y
    Nature; 2006 Nov; 444(7116):179-80. PubMed ID: 17051161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity Assays for Rhomboid Proteases.
    Arutyunova E; Strisovsky K; Lemieux MJ
    Methods Enzymol; 2017; 584():395-437. PubMed ID: 28065272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis for catalysis and substrate specificity of a rhomboid protease.
    Vinothkumar KR; Strisovsky K; Andreeva A; Christova Y; Verhelst S; Freeman M
    EMBO J; 2010 Nov; 29(22):3797-809. PubMed ID: 20890268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.
    Goel P; Jumpertz T; Tichá A; Ogorek I; Mikles DC; Hubalek M; Pietrzik CU; Strisovsky K; Schmidt B; Weggen S
    Bioorg Med Chem Lett; 2018 May; 28(8):1417-1422. PubMed ID: 29463448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does the exosite of rhomboid protease affect substrate processing and inhibition?
    Shokhen M; Albeck A
    Protein Sci; 2017 Dec; 26(12):2355-2366. PubMed ID: 28884847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease.
    Xue Y; Ha Y
    J Biol Chem; 2013 Jun; 288(23):16645-16654. PubMed ID: 23609444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligomeric state study of prokaryotic rhomboid proteases.
    Sampathkumar P; Mak MW; Fischer-Witholt SJ; Guigard E; Kay CM; Lemieux MJ
    Biochim Biophys Acta; 2012 Dec; 1818(12):3090-7. PubMed ID: 22921757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency.
    Zhou Y; Moin SM; Urban S; Zhang Y
    Structure; 2012 Jul; 20(7):1255-63. PubMed ID: 22705210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.
    Baker RP; Young K; Feng L; Shi Y; Urban S
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8257-62. PubMed ID: 17463085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease.
    Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ
    J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.
    Cho S; Dickey SW; Urban S
    Mol Cell; 2016 Feb; 61(3):329-340. PubMed ID: 26805573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of rhomboid protease.
    Ha Y; Akiyama Y; Xue Y
    J Biol Chem; 2013 May; 288(22):15430-6. PubMed ID: 23585569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for intramembrane proteolysis by rhomboid serine proteases.
    Ben-Shem A; Fass D; Bibi E
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
    Panigrahi R; Lemieux MJ
    Adv Exp Med Biol; 2015; 883():107-17. PubMed ID: 26621464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane.
    Maegawa S; Ito K; Akiyama Y
    Biochemistry; 2005 Oct; 44(41):13543-52. PubMed ID: 16216077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells.
    Urban S; Baker RP
    Biol Chem; 2008 Aug; 389(8):1107-15. PubMed ID: 18979634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR.
    Shi C; Öster C; Bohg C; Li L; Lange S; Chevelkov V; Lange A
    J Am Chem Soc; 2019 Oct; 141(43):17314-17321. PubMed ID: 31603315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.