These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24099094)

  • 21. Sensitivity to interaural time difference and representation of azimuth in central nucleus of inferior colliculus in the barn owl.
    Bremen P; Poganiatz I; von Campenhausen M; Wagner H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):99-112. PubMed ID: 17021830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus.
    Vonderschen K; Wagner H
    J Neurophysiol; 2009 May; 101(5):2348-61. PubMed ID: 19261709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in interaural time sensitivity with interaural level differences in the inferior colliculus.
    Palmer AR; Liu LF; Shackleton TM
    Hear Res; 2007 Jan; 223(1-2):105-13. PubMed ID: 17141992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The balance of excitatory and inhibitory synaptic inputs for coding sound location.
    Ono M; Oliver DL
    J Neurosci; 2014 Mar; 34(10):3779-92. PubMed ID: 24599475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific loss of neural sensitivity to interaural time difference of unmodulated noise stimuli following noise-induced hearing loss.
    Haragopal H; Dorkoski R; Pollard AR; Whaley GA; Wohl TR; Stroud NC; Day ML
    J Neurophysiol; 2020 Oct; 124(4):1165-1182. PubMed ID: 32845200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Processing Is Frequency Specific in Auditory Cortex But Not in the Midbrain.
    Sollini J; Mill R; Sumner CJ
    J Neurosci; 2017 Jul; 37(27):6588-6599. PubMed ID: 28559383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues.
    Brainard MS; Knudsen EI; Esterly SD
    J Acoust Soc Am; 1992 Feb; 91(2):1015-27. PubMed ID: 1556303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Varying overall sound intensity to the two ears impacts interaural level difference discrimination thresholds by single neurons in the lateral superior olive.
    Tsai JJ; Koka K; Tollin DJ
    J Neurophysiol; 2010 Feb; 103(2):875-86. PubMed ID: 20018829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binaural response organization within a frequency-band representation of the inferior colliculus: implications for sound localization.
    Wenstrup JJ; Ross LS; Pollak GD
    J Neurosci; 1986 Apr; 6(4):962-73. PubMed ID: 3701417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2019 Aug; 122(2):737-748. PubMed ID: 31242052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaural level difference processing in the lateral superior olive and the inferior colliculus.
    Park TJ; Klug A; Holinstat M; Grothe B
    J Neurophysiol; 2004 Jul; 92(1):289-301. PubMed ID: 15056693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Neurons that encode sound direction].
    Peña JL
    Rev Neurol; 2002 Feb 1-15; 34(3):265-71. PubMed ID: 12022078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations.
    Lui LL; Mokri Y; Reser DH; Rosa MG; Rajan R
    Front Neurosci; 2015; 9():132. PubMed ID: 25941469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early monaural occlusion alters the neural map of interaural level differences in the inferior colliculus of the barn owl.
    Mogdans J; Knudsen EI
    Brain Res; 1993 Aug; 619(1-2):29-38. PubMed ID: 8374783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alignment of sound localization cues in the nucleus of the brachium of the inferior colliculus.
    Slee SJ; Young ED
    J Neurophysiol; 2014 Jun; 111(12):2624-33. PubMed ID: 24671535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A neuronal population code for sound localization.
    Fitzpatrick DC; Batra R; Stanford TR; Kuwada S
    Nature; 1997 Aug; 388(6645):871-4. PubMed ID: 9278047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cues for sound localization are encoded in multiple aspects of spike trains in the inferior colliculus.
    Chase SM; Young ED
    J Neurophysiol; 2008 Apr; 99(4):1672-82. PubMed ID: 18234986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monaural spectral processing differs between the lateral superior olive and the inferior colliculus: physiological evidence for an acoustic chiasm.
    Greene NT; Lomakin O; Davis KA
    Hear Res; 2010 Oct; 269(1-2):134-45. PubMed ID: 20600738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.