These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Grillitsch K; Connerth M; Köfeler H; Arrey TN; Rietschel B; Wagner B; Karas M; Daum G Biochim Biophys Acta; 2011 Dec; 1811(12):1165-76. PubMed ID: 21820081 [TBL] [Abstract][Full Text] [Related]
8. Thin-Layer Chromatography to Separate Phospholipids and Neutral Lipids from Yeast. Knittelfelder OL; Kohlwein SD Cold Spring Harb Protoc; 2017 May; 2017(5):. PubMed ID: 28461652 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Dulermo T; Tréton B; Beopoulos A; Kabran Gnankon AP; Haddouche R; Nicaud JM Biochim Biophys Acta; 2013 Sep; 1831(9):1486-95. PubMed ID: 23856343 [TBL] [Abstract][Full Text] [Related]
10. Identification of the major functional proteins of prokaryotic lipid droplets. Ding Y; Yang L; Zhang S; Wang Y; Du Y; Pu J; Peng G; Chen Y; Zhang H; Yu J; Hang H; Wu P; Yang F; Yang H; Steinbüchel A; Liu P J Lipid Res; 2012 Mar; 53(3):399-411. PubMed ID: 22180631 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Analysis of the Cellular Lipidome of Saccharomyces Cerevisiae Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Mohammad K; Jiang H; Hossain MI; Titorenko VI J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202524 [TBL] [Abstract][Full Text] [Related]
12. Preparative scale separation of neutral lipids and phospholipids by centrifugally accelerated thin-layer chromatography. Bergheim S; Malterud KE; Anthonsen T J Lipid Res; 1991 May; 32(5):877-9. PubMed ID: 2072045 [TBL] [Abstract][Full Text] [Related]
13. The lipid droplet lipidome. Wölk M; Fedorova M FEBS Lett; 2024 May; 598(10):1215-1225. PubMed ID: 38604996 [TBL] [Abstract][Full Text] [Related]
14. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Athenstaedt K; Jolivet P; Boulard C; Zivy M; Negroni L; Nicaud JM; Chardot T Proteomics; 2006 Mar; 6(5):1450-9. PubMed ID: 16470660 [TBL] [Abstract][Full Text] [Related]
15. Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS. Danne-Rasche N; Rubenzucker S; Ahrends R Anal Chim Acta; 2020 Dec; 1140():199-209. PubMed ID: 33218482 [TBL] [Abstract][Full Text] [Related]
16. Isolation of Lipid Droplets for Protein and Lipid Analysis. Horn PJ; Chapman KD; Ischebeck T Methods Mol Biol; 2021; 2295():295-320. PubMed ID: 34047983 [TBL] [Abstract][Full Text] [Related]
17. Proteomic studies of isolated lipid droplets from bacteria, C. elegans, and mammals. Na H; Zhang P; Ding Y; Yang L; Wang Y; Zhang H; Xie Z; Yang F; Cichello S; Liu P Methods Cell Biol; 2013; 116():1-14. PubMed ID: 24099284 [TBL] [Abstract][Full Text] [Related]
18. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. White T; Bursten S; Federighi D; Lewis RA; Nudelman E Anal Biochem; 1998 Apr; 258(1):109-17. PubMed ID: 9527856 [TBL] [Abstract][Full Text] [Related]
19. Profiling of Yeast Lipids by Shotgun Lipidomics. Klose C; Tarasov K Methods Mol Biol; 2016; 1361():309-24. PubMed ID: 26483029 [TBL] [Abstract][Full Text] [Related]
20. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Ejsing CS; Sampaio JL; Surendranath V; Duchoslav E; Ekroos K; Klemm RW; Simons K; Shevchenko A Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2136-41. PubMed ID: 19174513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]