These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24099465)

  • 1. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications.
    Grüttner C; Müller K; Teller J; Westphal F
    Int J Hyperthermia; 2013 Dec; 29(8):777-89. PubMed ID: 24099465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic iron oxide nanoparticles for tumor-targeted therapy.
    Chen B; Wu W; Wang X
    Curr Cancer Drug Targets; 2011 Feb; 11(2):184-9. PubMed ID: 21158723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic iron oxide nanoparticles for biomedical applications.
    Laurent S; Bridot JL; Elst LV; Muller RN
    Future Med Chem; 2010 Mar; 2(3):427-49. PubMed ID: 21426176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications.
    Gupta AK; Naregalkar RR; Vaidya VD; Gupta M
    Nanomedicine (Lond); 2007 Feb; 2(1):23-39. PubMed ID: 17716188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.
    Gupta AK; Gupta M
    Biomaterials; 2005 Jun; 26(18):3995-4021. PubMed ID: 15626447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
    Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F
    ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV
    Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.
    Lee N; Hyeon T
    Chem Soc Rev; 2012 Apr; 41(7):2575-89. PubMed ID: 22138852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications and potential toxicity of magnetic iron oxide nanoparticles.
    Liu G; Gao J; Ai H; Chen X
    Small; 2013 May; 9(9-10):1533-45. PubMed ID: 23019129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine?
    Ivkov R
    Int J Hyperthermia; 2013 Dec; 29(8):703-5. PubMed ID: 24219798
    [No Abstract]   [Full Text] [Related]  

  • 13. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides.
    Dias AM; Hussain A; Marcos AS; Roque AC
    Biotechnol Adv; 2011; 29(1):142-55. PubMed ID: 20959138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical design of biocompatible iron oxide nanoparticles for medical applications.
    Ling D; Hyeon T
    Small; 2013 May; 9(9-10):1450-66. PubMed ID: 23233377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine passivated Fe3O4 nanoparticles for thermal therapy.
    Barick KC; Hassan PA
    J Colloid Interface Sci; 2012 Mar; 369(1):96-102. PubMed ID: 22209576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications.
    Kruse AM; Meenach SA; Anderson KW; Hilt JZ
    Acta Biomater; 2014 Jun; 10(6):2622-9. PubMed ID: 24486913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study.
    Fakhimikabir H; Tavakoli MB; Zarrabi A; Amouheidari A; Rahgozar S
    J Therm Biol; 2018 Dec; 78():73-83. PubMed ID: 30509670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl₂-NaNO₃-NaOH aqueous system.
    Li Z; Kawashita M; Araki N; Mitsumori M; Hiraoka M; Doi M
    J Biomater Appl; 2011 Mar; 25(7):643-61. PubMed ID: 20207773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting.
    Fourmy D; Carrey J; Gigoux V
    Nanomedicine (Lond); 2015; 10(6):893-6. PubMed ID: 25867854
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release.
    Tai LA; Tsai PJ; Wang YC; Wang YJ; Lo LW; Yang CS
    Nanotechnology; 2009 Apr; 20(13):135101. PubMed ID: 19420485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.