These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24099658)

  • 1. Covalent bond formation between amino acids and lignin: cross-coupling between proteins and lignin.
    Cong F; Diehl BG; Hill JL; Brown NR; Tien M
    Phytochemistry; 2013 Dec; 96():449-56. PubMed ID: 24099658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin chemistry: biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment.
    Reale S; Attanasio F; Spreti N; De Angelis F
    Chemistry; 2010 May; 16(20):6077-87. PubMed ID: 20397161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In chemico evaluation of prohapten skin sensitizers: behavior of 2-methoxy-4-(¹³C)methylphenol in the peroxidase peptide reactivity assay (PPRA) as an alternative to animal testing.
    Merckel F; Giménez-Arnau E; Gerberick GF; Lepoittevin JP
    Toxicol Lett; 2013 Apr; 218(3):266-72. PubMed ID: 23454653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.
    Diehl BG; Brown NR
    J Agric Food Chem; 2014 Oct; 62(42):10312-9. PubMed ID: 25275918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins.
    Holmgren A; Brunow G; Henriksson G; Zhang L; Ralph J
    Org Biomol Chem; 2006 Sep; 4(18):3456-61. PubMed ID: 17036140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.
    Elder T; Berstis L; Beckham GT; Crowley MF
    J Agric Food Chem; 2016 Jun; 64(23):4742-50. PubMed ID: 27236926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts.
    Awad HM; Boersma MG; Vervoort J; Rietjens IM
    Arch Biochem Biophys; 2000 Jun; 378(2):224-33. PubMed ID: 10860540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation, detection, and quantification of hydroperoxides formed at side-chain and backbone sites on amino acids, peptides, and proteins.
    Morgan PE; Pattison DI; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2008 Nov; 45(9):1279-89. PubMed ID: 18762246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize.
    Grabber JH; Hatfield RD; Ralph J
    J Agric Food Chem; 2003 Aug; 51(17):4984-9. PubMed ID: 12903957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a biologically relevant antioxidant on the dehydrogenative polymerization of coniferyl alcohol.
    Holmgren A; Henriksson G; Zhang L
    Biomacromolecules; 2008 Dec; 9(12):3378-82. PubMed ID: 18991457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective Formation of β-O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models.
    Zhu X; Akiyama T; Yokoyama T; Matsumoto Y
    J Agric Food Chem; 2019 Jun; 67(25):6950-6961. PubMed ID: 31150582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H(2)O(2) incubation.
    Zhou H; Yang D; Qiu X; Wu X; Li Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10309-20. PubMed ID: 24196582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L; Wang Y
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin.
    Sasaki S; Nonaka D; Wariishi H; Tsutsumi Y; Kondo R
    Phytochemistry; 2008 Jan; 69(2):348-55. PubMed ID: 17910963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.