These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24099707)

  • 1. Topographic scale-range synergy at the functional bone/implant interface.
    Davies JE; Mendes VC; Ko JC; Ajami E
    Biomaterials; 2014 Jan; 35(1):25-35. PubMed ID: 24099707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface.
    Davies JE; Ajami E; Moineddin R; Mendes VC
    Biomaterials; 2013 May; 34(14):3535-46. PubMed ID: 23415644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces.
    Mendes VC; Moineddin R; Davies JE
    Biomaterials; 2007 Nov; 28(32):4748-55. PubMed ID: 17697709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro modeling of the bone/implant interface.
    Davies JE
    Anat Rec; 1996 Jun; 245(2):426-45. PubMed ID: 8769677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets.
    Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ
    J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair.
    McKee MD; Nanci A
    Microsc Res Tech; 1996 Feb; 33(2):141-64. PubMed ID: 8845514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.
    Att W; Kubo K; Yamada M; Maeda H; Ogawa T
    Int J Oral Maxillofac Implants; 2009; 24(5):831-41. PubMed ID: 19865623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae.
    Masuda T; Salvi GE; Offenbacher S; Felton DA; Cooper LF
    Int J Oral Maxillofac Implants; 1997; 12(4):472-85. PubMed ID: 9274076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of surface roughness on the displacement of osteogenic bone particles during placement of titanium screw-type implants.
    Tabassum A; Walboomers F; Wolke JG; Meijer GJ; Jansen JA
    Clin Implant Dent Relat Res; 2011 Dec; 13(4):269-78. PubMed ID: 19673924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of endosseous integration.
    Davies JE
    Int J Prosthodont; 1998; 11(5):391-401. PubMed ID: 9922731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats.
    Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD
    Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of laser-modified Ti6Al4V and bone interface revealed with STEM tomography.
    Grandfield K; Palmquist A; Engqvist H
    Ultramicroscopy; 2013 Apr; 127():48-52. PubMed ID: 22921933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone bonding at natural and biomaterial surfaces.
    Davies JE
    Biomaterials; 2007 Dec; 28(34):5058-67. PubMed ID: 17697711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscopy of the bone-bioactive implant interface.
    Davies JE; Baldan N
    J Biomed Mater Res; 1997 Sep; 36(4):429-40. PubMed ID: 9294759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces.
    Mendes VC; Moineddin R; Davies JE
    J Biomed Mater Res A; 2009 Aug; 90(2):577-85. PubMed ID: 18563827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model.
    Abron A; Hopfensperger M; Thompson J; Cooper LF
    J Prosthet Dent; 2001 Jan; 85(1):40-6. PubMed ID: 11174677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium.
    Att W; Tsukimura N; Suzuki T; Ogawa T
    Int J Oral Maxillofac Implants; 2007; 22(5):719-28. PubMed ID: 17974105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.