These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24099739)
1. Electrophoretic mobility of sarcoplasmic reticulum vesicles - analytical model includes amino acid residues of A+P+N domain of Ca(2+)-ATPase and charged lipids. Smejtek P; Word RC; Satterfield LE Biochim Biophys Acta; 2014 Mar; 1838(3):766-75. PubMed ID: 24099739 [TBL] [Abstract][Full Text] [Related]
2. Electrokinetic properties of the sarcoplasmic reticulum membrane obtained from reconstitution studies. Smejtek P; Mense M; Word R; Wang S J Membr Biol; 1999 Jan; 167(2):151-63. PubMed ID: 9916146 [TBL] [Abstract][Full Text] [Related]
3. Electrophoretic mobility of sarcoplasmic reticulum vesicles is determined by amino acids of A+P+N domains of Ca2+-ATPase. Smejtek P; Satterfield LE; Word RC; Abramson JJ Biochim Biophys Acta; 2010 Sep; 1798(9):1689-97. PubMed ID: 20471362 [TBL] [Abstract][Full Text] [Related]
4. Study of the electrokinetic properties of reconstituted sarcoplasmic reticulum vesicles. Brèthes D; Dulon D; Johannin G; Arrio B; Gulik-Krzywicki T; Chevallier J Arch Biochem Biophys; 1986 Apr; 246(1):355-65. PubMed ID: 2938544 [TBL] [Abstract][Full Text] [Related]
5. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Kirby TL; Karim CB; Thomas DD Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458 [TBL] [Abstract][Full Text] [Related]
6. Nanodisc-based kinetic assays reveal distinct effects of phospholipid headgroups on the phosphoenzyme transition of sarcoplasmic reticulum Ca Yamasaki K; Daiho T; Danko S; Yasuda S; Suzuki H J Biol Chem; 2017 Dec; 292(49):20218-20227. PubMed ID: 29032359 [TBL] [Abstract][Full Text] [Related]
7. Transmembrane Ca2+ gradient-mediated change of fluidity in the inner layer of phospholipids modulates Ca(2+)-ATPase of sarcoplasmic reticulum. Tu YP; Xu H; Yang FY Biochem Mol Biol Int; 1994 Jun; 33(3):597-605. PubMed ID: 7951077 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics in mouse atrial tumor sarcoplasmic reticulum. Voss JC; Mahaney JE; Jones LR; Thomas DD Biophys J; 1995 May; 68(5):1787-95. PubMed ID: 7612820 [TBL] [Abstract][Full Text] [Related]
9. Evidence that lipid lateral phase separation induces functionally significant structural changes in the Ca+2ATPase of the sarcoplasmic reticulum. Asturias FJ; Pascolini D; Blasie JK Biophys J; 1990 Jul; 58(1):205-17. PubMed ID: 2143423 [TBL] [Abstract][Full Text] [Related]
10. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Lee AG Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199 [TBL] [Abstract][Full Text] [Related]
11. Comparative characteristics of sarcoplasmic reticulum preparations from skeletal muscles of the ground squirrel Spermophilus undulatus, rats, and rabbits. Shutova AN; Storey KB; Lopina OD; Rubtsov AM Biochemistry (Mosc); 1999 Nov; 64(11):1250-7. PubMed ID: 10611529 [TBL] [Abstract][Full Text] [Related]
12. Selective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes. Squier TC; Thomas DD Biophys J; 1989 Oct; 56(4):735-48. PubMed ID: 2554990 [TBL] [Abstract][Full Text] [Related]
13. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
14. Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. Squier TC; Bigelow DJ; Thomas DD J Biol Chem; 1988 Jul; 263(19):9178-86. PubMed ID: 2837480 [TBL] [Abstract][Full Text] [Related]
15. [Effects of phospholipid layer on the dynamic microstructure of phosphorylation domain of Ca(2+)-ATPase from sarcoplasmic reticulum prepared from rabbit skeletal muscle]. Zhu MY Hokkaido Igaku Zasshi; 1992 May; 67(3):398-407. PubMed ID: 1387385 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of phospholamban by cAMP-dependent protein kinase enhances interactions between Ca-ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes. Negash S; Chen LT; Bigelow DJ; Squier TC Biochemistry; 1996 Sep; 35(35):11247-59. PubMed ID: 8784178 [TBL] [Abstract][Full Text] [Related]
17. Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters. Karlovská J; Uhríková D; Kucerka N; Teixeira J; Devínsky F; Lacko I; Balgavý P Biophys Chem; 2006 Jan; 119(1):69-77. PubMed ID: 16223561 [TBL] [Abstract][Full Text] [Related]
18. Effects of melittin on lipid-protein interactions in sarcoplasmic reticulum membranes. Mahaney JE; Kleinschmidt J; Marsh D; Thomas DD Biophys J; 1992 Dec; 63(6):1513-22. PubMed ID: 1336987 [TBL] [Abstract][Full Text] [Related]
20. [Conformational changes at the ATP-catalytic site of the reconstituted sarcoplasmic reticulum Ca-ATPase under th action of pH, Ca2+, and lanthanides]. Vinokurov MG; Ivkova MN; Pechatnikov VA Biofizika; 1998; 43(3):496-502. PubMed ID: 9702344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]